satto1237’s diary

s4tt01237’s diary

ラーメンとかCTFとかセキュリティとか

SECCON Beginners CTF 2019 Write-up

はじめに

2019/05/25 ~ 2019/05/26に開催されたSECCON Beginners CTFに個人で参加しました.
自分にとっての初CTFが去年のSECCON Beginners CTFだったので個人的に思い入れがあるCTFです.
去年はwarmupしか解けず,絶望してしまったので今年は時間を十分に確保して参加しました(バイトを休ませてもらった).

成績

54位(666チーム中)でした.

f:id:satto1237:20190526151446p:plain f:id:satto1237:20190526151459p:plain

Misc

Welcome [warmup, 593solves, 51pts]

SECCON Beginners CTFのIRCチャンネルで会いましょう。

IRC: freenode.net #seccon-beginners-ctf

アプローチ:IRCに入る

f:id:satto1237:20190526144417p:plain

ctf4b{welcome_to_seccon_beginners_ctf}

containers [302solves, 71pts]

Let's extract files from the container.
file

> file e35860e49ca3fa367e456207ebc9ff2f_containers
e35860e49ca3fa367e456207ebc9ff2f_containers: data

アプローチ:foremost

とりあえずbinwalkをかけるとPNGが大量に埋め込まれていることが分かります.

> binwalk e35860e49ca3fa367e456207ebc9ff2f_containers

DECIMAL       HEXADECIMAL     DESCRIPTION
--------------------------------------------------------------------------------
16            0x10            PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
107           0x6B            Zlib compressed data, compressed
738           0x2E2           PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
829           0x33D           Zlib compressed data, compressed
1334          0x536           PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
1425          0x591           Zlib compressed data, compressed
1914          0x77A           PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
2005          0x7D5           Zlib compressed data, compressed
2856          0xB28           PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
2947          0xB83           Zlib compressed data, compressed
3666          0xE52           PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
3757          0xEAD           Zlib compressed data, compressed
4354          0x1102          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
4445          0x115D          Zlib compressed data, compressed
5156          0x1424          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
5247          0x147F          Zlib compressed data, compressed
5846          0x16D6          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
5937          0x1731          Zlib compressed data, compressed
6722          0x1A42          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
6813          0x1A9D          Zlib compressed data, compressed
7757          0x1E4D          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
7848          0x1EA8          Zlib compressed data, compressed
8338          0x2092          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
8429          0x20ED          Zlib compressed data, compressed
9243          0x241B          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
9334          0x2476          Zlib compressed data, compressed
10319         0x284F          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
10410         0x28AA          Zlib compressed data, compressed
11042         0x2B22          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
11133         0x2B7D          Zlib compressed data, compressed
12118         0x2F56          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
12209         0x2FB1          Zlib compressed data, compressed
12809         0x3209          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
12900         0x3264          Zlib compressed data, compressed
13845         0x3615          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
13936         0x3670          Zlib compressed data, compressed
14592         0x3900          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
14683         0x395B          Zlib compressed data, compressed
15535         0x3CAF          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
15626         0x3D0A          Zlib compressed data, compressed
16440         0x4038          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
16531         0x4093          Zlib compressed data, compressed
17313         0x43A1          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
17404         0x43FC          Zlib compressed data, compressed
18218         0x472A          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
18309         0x4785          Zlib compressed data, compressed
19123         0x4AB3          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
19214         0x4B0E          Zlib compressed data, compressed
19926         0x4DD6          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
20017         0x4E31          Zlib compressed data, compressed
20869         0x5185          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
20960         0x51E0          Zlib compressed data, compressed
21742         0x54EE          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
21833         0x5549          Zlib compressed data, compressed
22465         0x57C1          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
22556         0x581C          Zlib compressed data, compressed
23408         0x5B70          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
23499         0x5BCB          Zlib compressed data, compressed
23989         0x5DB5          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
24080         0x5E10          Zlib compressed data, compressed
24810         0x60EA          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
24901         0x6145          Zlib compressed data, compressed
25753         0x6499          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
25844         0x64F4          Zlib compressed data, compressed
26788         0x68A4          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
26879         0x68FF          Zlib compressed data, compressed
27599         0x6BCF          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
27690         0x6C2A          Zlib compressed data, compressed
28504         0x6F58          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
28595         0x6FB3          Zlib compressed data, compressed
29085         0x719D          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
29176         0x71F8          Zlib compressed data, compressed
29808         0x7470          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
29899         0x74CB          Zlib compressed data, compressed
30844         0x787C          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
30935         0x78D7          Zlib compressed data, compressed
31524         0x7B24          PNG image, 128 x 128, 8-bit/color RGBA, non-interlaced
31615         0x7B7F          Zlib compressed data, compressed

foremostで抽出します.

> foremost e35860e49ca3fa367e456207ebc9ff2f_containers

PNGイメージとflagが1対1で対応しているみたいです.

f:id:satto1237:20190526145231p:plain

ctf4b{e52df60c058746a66e4ac4f34db6fc81}

Dump [163solves, 138pts]

Analyze dump and extract the flag!!

file

> file fc23f13bcf6562e540ed81d1f47710af_dump
fc23f13bcf6562e540ed81d1f47710af_dump: tcpdump capture file (little-endian) - version 2.4 (Ethernet, capture length 262144)

アプローチ:Oct to Bytes

tcpdump capture fileであることがわかったのでWiresharkで覗いてみます.

f:id:satto1237:20190526150626p:plain

f:id:satto1237:20190526150638p:plain

GET /webshell.php?cmd=ls -l /home/ctf4b/flag HTTP/1.1

GET /webshell.php?cmd=hexdump -e '16/1 "%02.3o " "\n"' /home/ctf4b/flag 

flaghexdumpしているっぽいのでdumpされたOctを集めてflagを復元します.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

with open('./message.txt') as f:
    messages = [s.strip() for s in f.readlines()]

output = bytearray()

for line in messages:
    m = line.split(' ')
    for x in m:
        if len(x) == 3:
            output.append(int(x,8))

with open('dump', 'wb') as f:
    f.write(output)
> file dump
dump: gzip compressed data, last modified: Sun Apr  7 10:46:34 2019, from Unix, original size 798720

復元結果がgzipになっているので解凍してあげます.

f:id:satto1237:20190526151338j:plain

ctf4b{hexdump_is_very_useful}

Sliding puzzle [106solves, 206pts]

スライドパズルを解いてください。すべてのパズルを解き終わったとき FLAG が表示されます。

nc 133.242.50.201 24912

0 はブランクで動かすことが可能です。操作方法は以下のとおりです。
0 : 上
1 : 右
2 : 下
3 : 左

操作手順は以下の形式で送信してください。

1,3,2,0, ... ,2

> nc 133.242.50.201 24912
----------------
| 03 | 04 | 01 |
| 08 | 02 | 05 |
| 06 | 00 | 07 |
----------------

アプローチ:拾ってきたソルバ(A-star)をよしなに書き換える

ソルバをググると以下のコードがヒットします.

github.com

これを今回の問題の形式に対応させると以下のようなソルバになります.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import numpy as np
from solver import Solver
from socket import *

def A_star(init_state, goal_state, max_iter, heuristic):
    command = ''
    solver = Solver(init_state, goal_state, heuristic, max_iter)
    path = solver.solve_a_star()

    if len(path) == 0:
        exit(1)

    init_idx = init_state.flatten().tolist().index(0)
    init_i, init_j = init_idx // goal_state.shape[0], init_idx % goal_state.shape[0]

    for node in reversed(path):
        cur_idx = node.get_state().index(0)
        cur_i, cur_j = cur_idx // goal_state.shape[0], cur_idx % goal_state.shape[0]

        new_i, new_j = cur_i - init_i, cur_j - init_j
        if new_j == 0 and new_i == -1:
            command += '0,'
            print('Moved UP    from ' + str((init_i, init_j)) + ' --> ' + str((cur_i, cur_j)))
        elif new_j == 0 and new_i == 1:
            command += '2,'
            print('Moved DOWN  from ' + str((init_i, init_j)) + ' --> ' + str((cur_i, cur_j)))
        elif new_i == 0 and new_j == 1:
            command += '1,'
            print('Moved RIGHT from ' + str((init_i, init_j)) + ' --> ' + str((cur_i, cur_j)))
        else:
            command += '3,'
            print('Moved LEFT  from ' + str((init_i, init_j)) + ' --> ' + str((cur_i, cur_j)))

        init_i, init_j = cur_i, cur_j

    return command

def parseRow(rec):
    row = [int(x) for x in rec.split(' ') if len(x) > 1]
    return row

def main():
    max_iter = 5000
    heuristic = "manhattan"
    algorithm = "a_star"
    n = 3

    goal_state = np.array([[0, 1, 2],[3, 4, 5],[6, 7, 8]])

    s = socket(AF_INET, SOCK_STREAM)
    s.connect(('133.242.50.201',24912))

    while True:
        rec = s.recv(1024).decode('utf-8')
        print(rec)
        rec = rec.split('\n')
        row1 = parseRow(rec[1])
        row2 = parseRow(rec[2])
        row3 = parseRow(rec[3])
        init_state = np.array([row1, row2, row3])

        command =  A_star(init_state, goal_state, max_iter, heuristic)
        s.send(command[:-1].encode('utf-8') + b'\n')

if __name__ == '__main__':
    main()
----------------
| 04 | 06 | 02 |
| 01 | 05 | 00 |
| 07 | 03 | 08 |
----------------


Moved LEFT  from (1, 2) --> (1, 1)
Moved UP    from (1, 1) --> (0, 1)
Moved LEFT  from (0, 1) --> (0, 0)
Moved DOWN  from (0, 0) --> (1, 0)
Moved RIGHT from (1, 0) --> (1, 1)
Moved DOWN  from (1, 1) --> (2, 1)
Moved LEFT  from (2, 1) --> (2, 0)
Moved UP    from (2, 0) --> (1, 0)
Moved RIGHT from (1, 0) --> (1, 1)
Moved UP    from (1, 1) --> (0, 1)
Moved LEFT  from (0, 1) --> (0, 0)

[snip]
----------------
| 03 | 00 | 02 |
| 04 | 01 | 05 |
| 06 | 07 | 08 |
----------------


Moved DOWN  from (0, 1) --> (1, 1)
Moved LEFT  from (1, 1) --> (1, 0)
Moved UP    from (1, 0) --> (0, 0)
[+] Congratulations! ctf4b{fe6f512c15daf77a2f93b6a5771af2f723422c72}

100問解いたらflagが落ちてきました.

ctf4b{fe6f512c15daf77a2f93b6a5771af2f723422c72}

Reversing

Seccompare [warmup, 407solves, 57pts]

file

> file seccompare
seccompare: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, BuildID[sha1]=4a607c82ea263205071c80295afe633412cda6f7, not stripped

アプローチ:ltrace

問題名にcompareが入っているのでstrcmpで愚直に比較してる読みltraceをします.

> ltrace ./seccompare hoge
strcmp("ctf4b{5tr1ngs_1s_n0t_en0ugh}", "hoge")   = -5
puts("wrong"wrong
)                                    = 6
+++ exited (status 0) +++

ctf4b{5tr1ngs_1s_n0t_en0ugh}

Web

Ramen [warmup, 280solves, 77pts]

ラーメン https://ramen.quals.beginners.seccon.jp

f:id:satto1237:20190526141556p:plain

アプローチ:UNION Query Injection

SQLiできそうな見た目をしているのでいつものやつ(' or 1 = 1 -- )を投げてみます.

f:id:satto1237:20190526141843p:plain

攻撃自体は成功していますがこのテーブルにはflagはないようです.

そのため,UNION句を使ってdbのテーブル名とカラム名一覧を取得します.
' UNION SELECT table_name, GROUP_CONCAT(column_name) FROM INFORMATION_SCHEMA.COLUMNS GROUP BY table_name --

f:id:satto1237:20190526142430p:plain

flagテーブルにflagカラムがあることがわかったので表示してあげます.

' UNION SELECT null,flag FROM flag --

f:id:satto1237:20190526142742p:plain

ctf4b{a_simple_sql_injection_with_union_select}

katsudon [214solves, 102pts]

Rails 5.2.1で作られたサイトです。

https://katsudon.quals.beginners.seccon.jp

クーポンコードを復号するコードは以下の通りですが、まだ実装されてないようです。

フラグは以下にあります。 https://katsudon.quals.beginners.seccon.jp/flag

f:id:satto1237:20190526143434p:plain

アプローチ:Base64

各店舗のシリアルコード(Base64 + 謎ハッシュ値)が表示されているのでBase64の方だけデコードしてみます.

> echo 'BAhJIhByZWl3YWhhbnRlbgY6BkVU' | base64 -D
I"reiwahanten:ET%

> echo 'BAhJIhNoZWlzZWlzaG9rdWRvdQY6BkVU' | base64 -D
I"heiseishokudou:ET%

> echo 'BAhJIhRyZXN0YXVyYW50c2hvd2EGOgZFVA==' | base64 -D
I"restaurantshowa:ET%

意味のある文字列だったのでflagページの方のBase64もデコードしてみます.

> echo 'BAhJIiVjdGY0YntLMzNQX1kwVVJfNTNDUjM3X0szWV9CNDUzfQY6BkVU' | base64 -D
I"%ctf4b{K33P_Y0UR_53CR37_K3Y_B453}:ET%

ctf4b{K33P_Y0UR_53CR37_K3Y_B453}

一応flagは取れたのですがRails 5.2.1と全く関係ない方法で取れてしまったので正直よくわかりませんでした.

Crypto

So Tired [warmup, 192solves, 115pts]

最強の暗号を作りました。 暗号よくわからないけどきっと大丈夫!

file

> file encrypted.txt
encrypted.txt: ASCII text, with very long lines, with no line terminators
eJwUm7V25UAQBT9IgZj[snip]4+xY8VKB7Iqh9I+5+K5v4B8HzgzA==

アプローチ:Base64 + zlib

encrypted.txtBase64だったのでとりあえずデコードしてみると

import base64
import zlib

with open('./encrypted.txt') as f:
    text = f.read().encode()

output = base64.b64decode(text)

with open('output_file', 'wb') as f:
    f.write(output)
> file output_file
output_file: zlib compressed data

zlib compressed dataであることが分かります.

次にzlibdecompressしてあげるとまたBase64テキストになることが分かりました.

めんどくさくなったので自動化します.

import base64
import zlib

with open('output_file', 'rb') as f:
    data = f.read()

count = 1

while True:
    print(count)
    if data[:2] == b'x\x9c':
        dc = zlib.decompress(data)
        data = base64.b64decode(dc)
        count += 1
    else:
        break

500回目でflagになります.

ctf4b{very_l0ng_l0ng_BASE64_3nc0ding}

Party [96solves, 223pts]

Let's 暗号パーティ

file

encrypt.py

from flag import FLAG
from Crypto.Util.number import bytes_to_long, getRandomInteger, getPrime


def f(x, coeff):
    y = 0
    for i in range(len(coeff)):
        y += coeff[i] * pow(x, i)
    return y


N = 512
M = 3
secret = bytes_to_long(FLAG)
assert(secret < 2**N)

coeff = [secret] + [getRandomInteger(N) for i in range(M-1)]
party = [getRandomInteger(N) for i in range(M)]

val = map(lambda x: f(x, coeff), party)
output = list(zip(party, val))
print(output)

encrypted

[(5100090496682565208825623434336918311864447624450952089752237720911276820495717484390023008022927770468262348522176083674815520433075299744011857887705787, 222638290427721156440609599834544835128160823091076225790070665084076715023297095195684276322931921148857141465170916344422315100980924624012693522150607074944043048564215929798729234427365374901697953272928546220688006218875942373216634654077464666167179276898397564097622636986101121187280281132230947805911792158826522348799847505076755936308255744454313483999276893076685632006604872057110505842966189961880510223366337320981324768295629831215770023881406933), (3084167692493508694370768656017593556897608397019882419874114526720613431299295063010916541874875224502547262257703456540809557381959085686435851695644473, 81417930808196073362113286771400172654343924897160732604367319504584434535742174505598230276807701733034198071146409460616109362911964089058325415946974601249986915787912876210507003930105868259455525880086344632637548921395439909280293255987594999511137797363950241518786018566983048842381134109258365351677883243296407495683472736151029476826049882308535335861496696382332499282956993259186298172080816198388461095039401628146034873832017491510944472269823075), (6308915880693983347537927034524726131444757600419531883747894372607630008404089949147423643207810234587371577335307857430456574490695233644960831655305379, 340685435384242111115333109687836854530859658515630412783515558593040637299676541210584027783029893125205091269452871160681117842281189602329407745329377925190556698633612278160369887385384944667644544397208574141409261779557109115742154052888418348808295172970976981851274238712282570481976858098814974211286989340942877781878912310809143844879640698027153722820609760752132963102408740130995110184113587954553302086618746425020532522148193032252721003579780125)]

アプローチ:ラグランジュ補間

どうみてもSecret Sharingなのでラグランジュ係数の演算誤差に注意しながらラグランジュ補間をします.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from Crypto.Util.number import long_to_bytes

output = [(5100090496682565208825623434336918311864447624450952089752237720911276820495717484390023008022927770468262348522176083674815520433075299744011857887705787, 222638290427721156440609599834544835128160823091076225790070665084076715023297095195684276322931921148857141465170916344422315100980924624012693522150607074944043048564215929798729234427365374901697953272928546220688006218875942373216634654077464666167179276898397564097622636986101121187280281132230947805911792158826522348799847505076755936308255744454313483999276893076685632006604872057110505842966189961880510223366337320981324768295629831215770023881406933), (3084167692493508694370768656017593556897608397019882419874114526720613431299295063010916541874875224502547262257703456540809557381959085686435851695644473, 81417930808196073362113286771400172654343924897160732604367319504584434535742174505598230276807701733034198071146409460616109362911964089058325415946974601249986915787912876210507003930105868259455525880086344632637548921395439909280293255987594999511137797363950241518786018566983048842381134109258365351677883243296407495683472736151029476826049882308535335861496696382332499282956993259186298172080816198388461095039401628146034873832017491510944472269823075), (6308915880693983347537927034524726131444757600419531883747894372607630008404089949147423643207810234587371577335307857430456574490695233644960831655305379, 340685435384242111115333109687836854530859658515630412783515558593040637299676541210584027783029893125205091269452871160681117842281189602329407745329377925190556698633612278160369887385384944667644544397208574141409261779557109115742154052888418348808295172970976981851274238712282570481976858098814974211286989340942877781878912310809143844879640698027153722820609760752132963102408740130995110184113587954553302086618746425020532522148193032252721003579780125)]

lag0 = (output[0][1] * output[1][0] * output[2][0]) // ((output[0][0]-output[1][0]) * (output[0][0]-output[2][0]))
lag1 = (output[1][1] * output[0][0] * output[2][0]) // ((output[1][0]-output[0][0]) * (output[1][0]-output[2][0]))
lag2 = (output[2][1] * output[1][0] * output[0][0]) // ((output[2][0]-output[1][0]) * (output[2][0]-output[0][0]))
secret = lag0 + lag1 + lag2
print(long_to_bytes(secret))

ctf4b{just_d0ing_sh4mir}

Secret Sharingは通常であれば  \bmod P (素数)上で行うはずなのですが今回の問題はちょっと違いましたね(getPrimeimportしてるので草案ではそうだったのかもしれない)

Go RSA [37solves, 363pts]

Nだけなくしちゃったんだよなあ……。

Server: nc 133.242.17.175 1337

> nc 133.242.17.175 1337
Encrypted flag is: 4725892326131640511938836467356380640397395755148515442238144307716268382252628227752706337031081867656763601262225583418303010193239356145844773869421583928956830475001659989802417519525376977915742938040734455026586792580629138505932764823343548099242875945669696790179649220582806677338952996620085062222609753771468773503312464080667581802039545168540557775175910139783773568895672923857876387792456057914870803099574255916087021356112254136797301781099631817901879990750639939793954026851169923804748143896554243498372979547574635377196600744448195794904851780679885454328745360685620374662405322841325901266342
> 11
7637811207979739219669490743378336650776535942943752504812029481377761911058098069129370129891186065700013565658425623145096181174940284569170173845864097024499447436745302222316078164333521436075178658111338798129491626771375186572329383908383189341163934643713551924178771397720534193926131973485274138576551879941437401429052365352919721199518788548926065434907685968560503200611173822384479590055822627949819328899143710503731634878295102670058980960754156195359495395859997444231704641045830011633563005247272318388623636227814230719956741962610601123833306215246334889580406317875472898523048605130307312142405
> 27
9083236756510502667672149597920937345609065952381103744458773609677349181137664898132336299978787391428145194106398285831203807691539715388732580593315467304747140152910340572357534656173881218457206571537060957819436232216333145441782251558467372248774534265689018805410968856154304032189923153055338920877482978347723674178822530503588597019097743749899880561404545399165006564054140566630136178882852665776958989723666213308348480085079148320569989618818179565755270024216590124150820307469348296537784213056635374932270363584956103955814113622691900216592869655412483832137357451499594296512566943069908225210734
> 100
7026445835542647141907783190328483047682576235769713858426579438967936914699835557760650020607977551407452309826139518542937401053779667154528749498335633652039979184783915183555701404386624160304188959930900255234658247046723155024892615238236151937654211279613994878056685883680731033253494552504451907528560837434514304089104648323475985198621962943979282704998385067331133496621660306924791131855783998482073799172052170009672789638003863302229835592540595367819302032212643072356316510889051286933794282881878035554552646333541242222793357920058043907289691535546821516658857953954016748437167985559279211706133
The D was 11458711755035670464038023339470449045516641995506883118289541007057383750687501319340094124932721557270059748633889547682404537144455516634669377475861767368934592310210016407301606085157477328662317671491707721936501722619798842708958774830172877965800990263700253906048588526355356847729377612163313112308312564511078609962986973393588081618659656723726978199229317195649278770467451124046419253881031382495199996086694246635234831202278493431951587700512798998873022490223975989484868695392247040865016421693345721234250068247064936395381184432538492079017858523226444063058574726651206459901461956681780685609953

アプローチ:GCD

CDが既知なのであとはNが分かればmを求めることができます.
しかし,問題文にもある通りNが公開されていなのでmCの対応関係を使ってNを求める必要があります.

RSAでは   C は以下のように計算します.

 C \equiv m^{e} \bmod N

そのため, m^{e} は次のように表すことができます.

 m_1^{e}  = k_1 N + C_1

 m_2^{e}  = k_2 N + C_2

 m_3^{e}  = k_3 N + C_3

したがって,  k_i N = m_i^{e} - C_i により  k_i N が取得可能になります.

あとは  k_i N 同士のGCDを計算すれば  N が求められます.
 k_i の値によっては上手くいかない場合がありますが上手くいくまで mをガチャれば大丈夫です(は?

以下ソルバです.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from Crypto.Util.number import *

e = 0x10001
c = 4725892326131640511938836467356380640397395755148515442238144307716268382252628227752706337031081867656763601262225583418303010193239356145844773869421583928956830475001659989802417519525376977915742938040734455026586792580629138505932764823343548099242875945669696790179649220582806677338952996620085062222609753771468773503312464080667581802039545168540557775175910139783773568895672923857876387792456057914870803099574255916087021356112254136797301781099631817901879990750639939793954026851169923804748143896554243498372979547574635377196600744448195794904851780679885454328745360685620374662405322841325901266342
d = 11458711755035670464038023339470449045516641995506883118289541007057383750687501319340094124932721557270059748633889547682404537144455516634669377475861767368934592310210016407301606085157477328662317671491707721936501722619798842708958774830172877965800990263700253906048588526355356847729377612163313112308312564511078609962986973393588081618659656723726978199229317195649278770467451124046419253881031382495199996086694246635234831202278493431951587700512798998873022490223975989484868695392247040865016421693345721234250068247064936395381184432538492079017858523226444063058574726651206459901461956681780685609953

m1 = 11
c1 = 7637811207979739219669490743378336650776535942943752504812029481377761911058098069129370129891186065700013565658425623145096181174940284569170173845864097024499447436745302222316078164333521436075178658111338798129491626771375186572329383908383189341163934643713551924178771397720534193926131973485274138576551879941437401429052365352919721199518788548926065434907685968560503200611173822384479590055822627949819328899143710503731634878295102670058980960754156195359495395859997444231704641045830011633563005247272318388623636227814230719956741962610601123833306215246334889580406317875472898523048605130307312142405

m2 = 27
c2 = 9083236756510502667672149597920937345609065952381103744458773609677349181137664898132336299978787391428145194106398285831203807691539715388732580593315467304747140152910340572357534656173881218457206571537060957819436232216333145441782251558467372248774534265689018805410968856154304032189923153055338920877482978347723674178822530503588597019097743749899880561404545399165006564054140566630136178882852665776958989723666213308348480085079148320569989618818179565755270024216590124150820307469348296537784213056635374932270363584956103955814113622691900216592869655412483832137357451499594296512566943069908225210734

m3 =100
c3 =  7026445835542647141907783190328483047682576235769713858426579438967936914699835557760650020607977551407452309826139518542937401053779667154528749498335633652039979184783915183555701404386624160304188959930900255234658247046723155024892615238236151937654211279613994878056685883680731033253494552504451907528560837434514304089104648323475985198621962943979282704998385067331133496621660306924791131855783998482073799172052170009672789638003863302229835592540595367819302032212643072356316510889051286933794282881878035554552646333541242222793357920058043907289691535546821516658857953954016748437167985559279211706133

k1_n = pow(m1,e) - c1
k2_n = pow(m2,e) - c2
k3_n = pow(m3,e) - c3

n = GCD(k1_n, GCD(k2_n, k3_n))
print(long_to_bytes(pow(c, d, n)))

ctf4b{f1nd_7he_p4ramet3rs}

 e も公開されていませんがエスパーで0x10001を使いました.

Bit Flip [28solves, 393pts]

平文を1ビットランダムで反転させる能力を手に入れた!

Server: nc 133.242.17.175 31337

bitflip.py

from Crypto.Util.number import bytes_to_long
import random

N = 82212154608576254900096226483113810717974464677637469172151624370076874445177909757467220517368961706061745548693538272183076941444005809369433342423449908965735182462388415108238954782902658438063972198394192220357503336925109727386083951661191494159560430569334665763264352163167121773914831172831824145331
e = 3
FLAG = bytes_to_long(open('flag', 'rb').read())

r = 1 << random.randrange(0, FLAG.bit_length() // 4)
C = pow(FLAG ^ r, e, N)

print(C)
> nc 133.242.17.175 31337
34495772845776138053860574863082807629902875416466919427415045743727265142914336137794413529141543617083815519863768748750221150257700972178855168455330281760754772707935321008538904121600699189837041293041987846498541772956761968152857045790864281449660662376827310046502947581341524518919435263611890512450
> nc 133.242.17.175 31337
22847704804485272897240201332364615448076265560473081494130345961236707114724029595074930665254174643883050394417095822457682230300066684688366644862329503747236653245028193028050352131020229282412626915605242797100427600649337929655211677780729739319416990174820944195984397134699611486337684117580918892985
> nc 133.242.17.175 31337
43035312703842017954042292254907266700617316162695453879829757160086337037615079359132390226750471117197542576308742513788463886773570509421068480648480633408018559488856706451532969717573877686330681208899968785429205284758238175636453962046579776676915523262861472762948841759403707556065773671701666530758

アプローチ:Related Message Attack

ぱっと見eが3なのでLow Public Exponent Attackが使えるのでは?と思ったのですがncして返ってくる暗号文を見ても分かる通りメッセージがパディングされており,そう簡単にはいきませんでした.

気を取り直して平文における1bit反転について考えてみます.
暗号化の際にflagXORをとっているので一見複雑そうに見えますが,数式に落とすと次のように簡単化されます.

 {(m - 2^{x})^{e}} \bmod N
または
 {(m + 2^{x})^{e}} \bmod N

そのため,2つの暗号文  C_1,  C_2 は次のように表されます.

C_1 \equiv m_1^{3} \bmod N
  m_1 \equiv m_2 + b \bmod N

C_1 \equiv (m_2 + b) ^ 3 \bmod N
 C_2 \equiv m_2^{3} \bmod N

ここからゴリゴリ計算すると  m_2 は以下のようになります.

 m_2 \equiv \frac{b(C_1 + 2C_2 - b^{3})}{C_1 - C_2 + 2b^{3}}  \bmod N

詳しくはpaper

以下ソルバです.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from Crypto.Util.number import *

def getMessage(b, c1, c2, n, e):
    b3 = pow(b, e, n)
    part1 = b * (c1 + 2 * c2 - b3) % n
    part2 = (c1 - c2 + 2 * b3) % n
    part2 = inverse(part2, n)
    return (part1 * part2) % n

def main():
    N = 82212154608576254900096226483113810717974464677637469172151624370076874445177909757467220517368961706061745548693538272183076941444005809369433342423449908965735182462388415108238954782902658438063972198394192220357503336925109727386083951661191494159560430569334665763264352163167121773914831172831824145331
    e = 3
    c1 = 48435977819599167293699473693205310917010250721248336492061287216379692891690691913767776069993911112239078185069288585022377993407270013401637539048567366526297730605589951913845745872046158333042631889854531385928428660788578942630939788805433004268454651608813773788184844655098499352542867632893087089862
    c2 = 32832657981817352905083775530972899460590019159991145524259682040379084401983824033739329107366301756520684118701358144664961003685650874802305450356329470616987673919308922191127619492477891253202306385458337433034756100386997791550557924840412386588071364098074412967888671978045411920247972161545432892891


    b1_list = []
    b2_lsit = []

    for i in range(200):
        x = 1 << i
        b1_list.append(x)
        b1_list.append(-x)
        b2_lsit.append(x)
        b2_lsit.append(-x)

    for b1 in b1_list:
        for b2 in b2_lsit:
            if b1 == b2:
                continue
            else:
                b = b1 - b2
                message = getMessage(b, c1, c2, N, e) - b2
                flag = long_to_bytes(message)
                if b'ctf4b' in flag:
                    print(flag)
                    return

if __name__ == '__main__':
    main()
> python solve.py
b'ctf4b{b1tfl1pp1ng_1s_r3lated_m3ss4ge} DUMMYDUMMYDUMMYDUMMYDUMMYDUMMYDUMMYDUMMYDUMMYDUMMYDUMMYDUMMYDUMMYDUMMYDUMMYDUMMYDUMMY\n'

ctf4b{b1tfl1pp1ng_1s_r3lated_m3ss4ge}

 mのベースがずれているのでbは予め想定値を生成しておくことで差分を全探索しています.

まとめ

  • CTFを始めた1年前(warmupしか解けなかった)と比較すると少しは成長できたのではないかと思う
  • Crypto全完できたのでやっとCrypto Beginnerになれた(は?
  • Web, Rev, Pwn 何も分からないので勉強します(低レイヤも高レイヤも何も分からないのはまずい)
  • Pwnに至ってはwarmupすら解けなかったので本当に悲しくなった

f:id:satto1237:20190526173956p:plain

HarekazeCTF 2019 Write-up

はじめに

2019/05/18 ~ 2019/05/19に開催されたHarekazeCTFにチームで参加しました.
今回は自分が解いた問題についてのWrirte-upです.

成績

510pts獲得して68位(523チーム中)でした.

f:id:satto1237:20190519153916p:plain

ONCE UPON A TIME [Crypto, 71solves, 100pts]

Now!! Let the games begin!!
- problem.py
- result.txt

prblem.py

#!/usr/bin/python3

import random
import binascii
import re
from keys import flag

flag = re.findall(r'HarekazeCTF{(.+)}', flag)[0]
flag = flag.encode()
#print(flag)

def pad25(s):
    if len(s) % 25 == 0:
        return b''
    return b'\x25'*(25 - len(s) % 25)

def kinoko(text):
    text = text + pad25(text)
    mat = []
    for i in range(0, len(text), 25):
        mat.append([
            [text[i], text[i+1], text[i+2], text[i+3], text[i+4]],
            [text[i+5], text[i+6], text[i+7], text[i+8], text[i+9]],
            [text[i+10], text[i+11], text[i+12], text[i+13], text[i+14]],
            [text[i+15], text[i+16], text[i+17], text[i+18], text[i+19]],
            [text[i+20], text[i+21], text[i+22], text[i+23], text[i+24]],
            ])
    return mat

def takenoko(X, Y):
    W = [[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]
    for i in range(5):
        for j in range(5):
            for k in range(5):
                W[i][j] = (W[i][j] + X[i][k] * Y[k][j]) % 251
    return W

def encrypt(m1, m2):
    c = b""
    for mat in m1:
        g = random.randint(0,1)
        if g == 0:
            mk = takenoko(m2, mat)
        else:
            mk = takenoko(mat, m2)
        for k in mk:
            c += bytes(k)

    return c


if __name__ == '__main__':
    m1 = kinoko(flag)
    m2 = [[1,3,2,9,4], [0,2,7,8,4], [3,4,1,9,4], [6,5,3,-1,4], [1,4,5,3,5]]


    print("Encrypted Flag:")
    enc_flag = binascii.hexlify(encrypt(m1, m2)).decode()
    print(enc_flag)

result.txt

Encrypted Flag:
ea5929e97ef77806bb43ec303f304673de19f7e68eddc347f3373ee4c0b662bc37764f74cbb8bb9219e7b5dbc59ca4a42018

アプローチ:逆行列

problem.pyresult.txtを確認すると以下のことが分かります.

  • padding済のflag長は50文字っぽい
  • kinokoではflagを 5 \times 5 行列に変換している
  • takenokoでは X \cdot Yを計算している
  • encryptでは乱数に応じて行列演算の順番を決定している

そのため,

$$ {m_{2}}^{-1} \cdot W_{i} $$

または

$$ W_{i} \cdot m_{2}^{-1} $$

を計算すればflagを復号できることが分かります.

ここで, m_{2}

$$ m_{2} = \begin{bmatrix} 1 & 3 & 2 & 9 & 4 \\ 0 & 2 & 7 & 8 & 4 \\ 3 & 4 & 1 & 9 & 4 \\ 6 & 5 & 3 & -1 & 4 \\ 1 & 4 & 5 & 3 & 5 \end{bmatrix} $$

なので

$$ m_{2}^{-1} = \frac{1}{243} \begin{bmatrix} 247 & 11 & -194 & 121 & -148 \\ -935 & 41 & 757 & -278 & 332 \\ -198 & 63 & 126 & -36 & 36 \\ -59 & 20 & 67 & -23 & -4 \\ 932 & -110 & -733 & 248 & -221 \end{bmatrix} $$

となります.

通常の行列演算であればあとはやるだけになるのですがこの問題の行列演算は \bmod 251上で行われているためもうひと工夫必要になります.

ここで \frac{1}{243} \bmod 251 上で 243の逆元となるので  94 として扱えます .したがって,演算結果に 94を乗じて  \bmod 251すれば復号が可能になります.

以下ソルバです.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import binascii
import numpy as np

def kinoko(text):
    mat = []
    for i in range(0, len(text), 25):
        mat.append([
            [text[i], text[i+1], text[i+2], text[i+3], text[i+4]],
            [text[i+5], text[i+6], text[i+7], text[i+8], text[i+9]],
            [text[i+10], text[i+11], text[i+12], text[i+13], text[i+14]],
            [text[i+15], text[i+16], text[i+17], text[i+18], text[i+19]],
            [text[i+20], text[i+21], text[i+22], text[i+23], text[i+24]],
            ])
    return mat

def decrypt(mat):
    flag = ''
    for row in mat:
        for x in row:
            flag += chr((int((round(x) * 94) % 251)))

    return flag

def main():
    encode_flag = 'ea5929e97ef77806bb43ec303f304673de19f7e68eddc347f3373ee4c0b662bc37764f74cbb8bb9219e7b5dbc59ca4a42018'
    W = kinoko(binascii.unhexlify(encode_flag))
    w1 = W[0]
    w2 = W[1]
    m2 = np.array([[1,3,2,9,4], [0,2,7,8,4], [3,4,1,9,4], [6,5,3,-1,4], [1,4,5,3,5]])
    inv_m2 = np.linalg.inv(m2) * np.linalg.det(m2)
    print(decrypt(np.dot(w1, inv_m2)))
    print(decrypt(np.dot(w2, inv_m2)))

if __name__ == '__main__':
    main()
Op3n_y0ur_3y3s_1ook_up_t0
_th3_ski3s_4nd_s33%%%%%%%

HarekazeCTF{Op3n_y0ur_3y3s_1ook_up_t0_th3_ski3s_4nd_s33}

まとめ

  • さんすうができない
  • バイトで時間がとれなかった(これは言い訳)
  • Cryptoできるようになりたい

INS'hAck CTF Write-up

はじめに

2019/05/03 ~ 2019/05/06に開催されたINS'hAck CTFに参加しました.
初日しか参加してないので最終的な順位は分かりません.

Telegram [Misc]

Join our Telegram channel !

アプローチ:リンク先にとぶ

INSA{is_e2e_8annEd_1n_Russi4_too}

gflag [Misc]

My brother likes esoteric programming. He sent me this file but I don't see what it is for. Could you help me ?

> file gflag
gflag: ASCII text

アプローチ:gcode

> wc -l gflag
    1754 gflag
> head gflag
M73 P0 R2
M201 X9000 Y9000 Z500 E10000
M203 X500 Y500 Z12 E120
M204 P2000 R1500 T2000
M205 X10.00 Y10.00 Z0.20 E2.50
M205 S0 T0
M107
M115 U3.1.0
M83
M204 S2000 T1500

既視感があるなと思ったらNCプログラムでした(5,6年前にCNC旋盤使ったことがある)
(gcode だから gflagってことか〜)

適当なNCViewerに流すとflagが表示されます.

ncviewer.com

f:id:satto1237:20190507211816p:plain f:id:satto1237:20190507211852p:plain

INSA{3d_pr1nt3d_fl49}

Dashlame - Part 1 [Rev]

Can you try our new password manager ? There's a free flag in every password archive created !

This challenge contains a second part in the Crypto category.

> file dashlame.pyc
dashlame.pyc: python 2.7 byte-compiled

アプローチ:uncompyle

バイトコンパイルされたPythonファイルが渡されるのでとりあえずuncompyleします.

> uncompyle6 dashlame.pyc
# uncompyle6 version 3.2.6
# Python bytecode 2.7 (62211)
# Decompiled from: Python 2.7.15 |Anaconda, Inc.| (default, May  1 2018, 18:37:05)
# [GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)]
# Embedded file name: dashlame.py
# Compiled at: 2019-04-17 06:56:53
from Crypto.Cipher import AES
import os, random, sys, sqlite3, time, zlib
HEADER = "      /.m.\\\n     /.mnnm.\\                                              ___\n    |.mmnvvnm.\\.                                     .,,,/`mmm.\\\n    |.mmnnvvnm.\\:;,.                           ..,,;;;/.mmnnnmm.\\\n    \\ mmnnnvvnm.\\::;;,                    .,;;;;;;;;/.mmmnnvvnnm.|\n     \\`mmnnnvvnm.\\::;::.sSSs      sSSs ,;;;;;;;;;;/.mmmnnvvvnnmm'/\n       \\`mmnnnvnm.\\:::::SSSS,,,,,,SSSS:::::::;;;/.mmmnnvvvnnmmm'/\n          \\`mnvvnm.\\::%%%;;;;;;;;;;;%%%%:::::;/.mnnvvvvnnmmmmm'/\n             \\`mmmm.%%;;;;;%%%%%%%%%%%%%%%::/.mnnvvvnnmmmmm'/ '\n                \\`%%;;;;%%%%s&&&&&&&&&s%%%%mmmnnnmmmmmm'/ '\n     |           `%;;;%%%%s&&.%%%%%%.%&&%mmmmmmmmmm'/ '\n\\    |    /       %;;%%%%&&.%;`    '%.&&%%%////// '\n  \\  |  /         %%%%%%s&.%%   x   %.&&%%%%%//%\n    \\  .:::::.  ,;%%%%s&&&&.%;     ;.&&%%%%%%%%/,\n-!!!- ::#:::::%%%%%%s&&&&&&&&&&&&&&&&&%%%%%%%%%%%\n    / :##:::::&&&&&&&&&&&&&&&&&&&&&%%%%%%%%%%%%%%,\n  /  | `:#:::&&&&&&&&&&&&&&&&&&&&&&&&%%%%%%%%%%%%%\n     |       `&&&&&&&&&,&&&&&&&&&&&&SS%%%%%%%%%%%%%\n               `~~~~~'~~        SSSSSSS%%%%%%%%%%%%%\n                               SSSSSSSS%%%%%%%%%%%%%%\n                              SSSSSSSSSS%%%%%%%%%%%%%.\n                            SSSSSSSSSSSS%%%%%%%%%%%%%%\n                          SSSSSSSSSSSSS%%%%%%%%%%%%%%%.\n                        SSSSSSSSSSSSSSS%%%%%%%%%%%%%%%%\n                      SSSSSSSSSSSSSSSS%%%%%%%%%%%%%%%%%.\n                    SSSSSSSSSSSSSSSSS%%%%%%%%%%%%%%%%%%%\n                  SSSSSSSSSSSSSSSSSS%%%%%%%%%%%%%%%%%%%%.\n\n                          WELCOME TO DASHLAME\n"
PEARSON_TABLE = [
 199, 229, 151, 178, 53, 6, 131, 42, 248, 110, 39, 28, 51, 216, 32, 14, 77, 34, 166, 213, 157, 150, 115, 197, 228, 221, 254, 172, 84, 27, 36, 156, 69, 96, 12, 220, 225, 137, 246, 141, 44, 208, 191, 109, 163, 21, 173, 250, 98, 227, 203, 162, 188, 3, 105, 171, 215, 15, 207, 218, 234, 56, 136, 235, 97, 79, 189, 102, 134, 11, 224, 117, 177, 222, 100, 129, 78, 18, 130, 187, 9, 184, 99, 108, 202, 13, 238, 17, 94, 70, 180, 144, 185, 168, 123, 71, 176, 91, 4, 153, 103, 242, 80, 127, 198, 82, 169, 148, 48, 120, 59, 55, 230, 209, 50, 73, 31, 49, 142, 149, 167, 249, 116, 1, 7, 86, 143, 101, 29, 52, 114, 154, 160, 128, 19, 170, 46, 214, 38, 67, 186, 252, 181, 145, 212, 183, 22, 231, 107, 43, 47, 122, 251, 217, 5, 62, 88, 244, 200, 93, 240, 219, 124, 58, 161, 89, 211, 158, 247, 60, 236, 65, 106, 113, 66, 81, 165, 194, 223, 40, 233, 126, 139, 72, 132, 61, 135, 57, 87, 182, 164, 35, 159, 118, 8, 83, 210, 243, 104, 76, 75, 119, 90, 138, 20, 206, 95, 16, 74, 33, 245, 237, 111, 64, 253, 125, 23, 232, 193, 37, 175, 92, 30, 241, 255, 133, 0, 140, 2, 155, 85, 10, 146, 179, 25, 26, 226, 201, 195, 121, 190, 63, 68, 152, 45, 147, 41, 204, 192, 205, 196, 54, 174, 239, 112, 24]

def pad(s):
    mark = chr(16 - len(s) % 16)
    while len(s) % 16 != 15:
        s += chr(random.randint(0, 255))

    return s + mark


def unpad(s):
    return s[:-ord(s[-1])]


def get_random_passphrase():
    sys.stdout.write('Getting random data from atmospheric noise and mouse movements')
    sys.stdout.flush()
    for i in range(10):
        sys.stdout.write('.')
        sys.stdout.flush()
        time.sleep(random.randint(1, 20) / 10.0)

    print ''
    with open('wordlist.txt', 'rb') as (fi):
        passwords = fi.read().strip().split('\n')
    return (random.choice(passwords), random.choice(passwords))


def get_pearson_hash(passphrase):
    key, iv = ('', '')
    for i in range(32):
        h = (i + ord(passphrase[0])) % 256
        for c in passphrase[1:]:
            h = PEARSON_TABLE[h ^ ord(c)]

        if i < 16:
            key += chr(h)
        else:
            iv += chr(h)

    return (
     key, iv)


def encrypt_stream(data, passphrase):
    key, iv = get_pearson_hash(passphrase)
    aes = AES.new(key, AES.MODE_CBC, iv)
    data = pad(data)
    return aes.encrypt(data)


def decrypt_stream(data, passphrase):
    key, iv = get_pearson_hash(passphrase)
    aes = AES.new(key, AES.MODE_CBC, iv)
    data = unpad(aes.decrypt(data))
    return data


def encrypt_archive(archive_filename, passphraseA, passphraseB):
    with open(archive_filename, 'rb') as (db_fd):
        with open(archive_filename.replace('.db', '.dla'), 'wb') as (dla_fd):
            enc1 = encrypt_stream(db_fd.read(), passphraseA)
            enc2 = encrypt_stream(enc1, passphraseB)
            dla_fd.write(enc2)
    os.unlink(archive_filename)


def decrypt_archive(archive_filename, passphraseA, passphraseB):
    with open(archive_filename, 'rb') as (dla_fd):
        with open(archive_filename.replace('.dla', '.db'), 'wb') as (db_fd):
            dec1 = decrypt_stream(dla_fd.read(), passphraseB)
            dec2 = decrypt_stream(dec1, passphraseA)
            db_fd.write(dec2)
    os.unlink(archive_filename)


def createArchive():
    archive_name = raw_input('Please enter your archive name: ')
    passphraseA, passphraseB = get_random_passphrase()
    print 'This is your passphrase :', passphraseA, passphraseB
    print 'Please remember it or you will lose all your passwords.'
    archive_filename = archive_name + '.db'
    with open(archive_filename, 'wb') as (db_fd):
        db_fd.write(zlib.decompress('x\x9c\x0b\x0e\xf4\xc9,IUH\xcb/\xcaM,Q0f`a`ddpPP````\x82b\x18`\x04b\x164>!\xc0\xc4\xa0\xfb\x8c\x9b\x17\xa4\x98y.\x03\x10\x8d\x82Q0\n\x88\x05\x89\x8c\xec\xe2\xf2\xf2\x8c\x8d\x82%\x89I9\xa9\x01\x89\xc5\xc5\xe5\xf9E)\xc5p\x06\x93s\x90\xabc\x88\xabB\x88\xa3\x93\x8f\xab\x02\\X\xa3<5\xa9\x18\x94\xabC\\#Bt\x14J\x8bS\x8b\xf2\x12sa\xdc\x02\xa820W\x13\x927\xcf0\x00\xd1(\x18\x05\xa3`\x08\x03#F\x16mYkh\xe6\x8fO\xadH\xcc-\xc8I\x85\xe5~O\xbf`\xc7\xea\x90\xcc\xe2\xf8\xa4\xd0\x92\xf8\xc4\xf8`\xe7"\x93\x92\xe4\x8cZ\x00\xa8&=\x8f'))
    encrypt_archive(archive_filename, passphraseA, passphraseB)
    print 'Archive created successfully.'


def updateArchive():
    archive_name = raw_input('Please enter your archive name: ')
    passphrase = raw_input('Please enter your passphrase: ')
    passphraseA, passphraseB = passphrase.split()
    website = raw_input('Website: ')
    username = raw_input('Username: ')
    password = raw_input('Password: ')
    dla_filename = archive_name + '.dla'
    db_filename = archive_name + '.db'
    decrypt_archive(dla_filename, passphraseA, passphraseB)
    conn = sqlite3.connect(db_filename)
    cur = conn.cursor()
    cur.execute('INSERT INTO Passwords VALUES(?,?,?)', (website, username, password))
    conn.commit()
    conn.close()
    encrypt_archive(db_filename, passphraseA, passphraseB)
    print 'Update done.'


def accessArchive():
    archive_name = raw_input('Please enter your archive name: ')
    passphrase = raw_input('Please enter your passphrase: ')
    passphraseA, passphraseB = passphrase.split()
    website = raw_input('Website: ')
    dla_filename = archive_name + '.dla'
    db_filename = archive_name + '.db'
    decrypt_archive(dla_filename, passphraseA, passphraseB)
    conn = sqlite3.connect(db_filename)
    cur = conn.cursor()
    cur.execute('SELECT Username, Password FROM Passwords WHERE Website=?', (website,))
    results = cur.fetchall()
    conn.close()
    encrypt_archive(db_filename, passphraseA, passphraseB)
    if len(results) == 0:
        print 'No results.'
    else:
        for result in results:
            print result[0], ':', result[1]


if __name__ == '__main__':
    print HEADER
    print '1. Create a new password archive'
    print '2. Add a password to an archive'
    print '3. Access a password from an existing archive'
    try:
        res = raw_input()
        if res == '1':
            createArchive()
        else:
            if res == '2':
                updateArchive()
            else:
                if res == '3':
                    accessArchive()
                else:
                    print 'Wrong choice'
    except:
        print 'Error.'

ぱっと見dbファイル作成してあれこれしてっるぽいですね.

パスワードアーカイブ作成

> python dashlame.py
      /.m.\
     /.mnnm.\                                              ___
    |.mmnvvnm.\.                                     .,,,/`mmm.\
    |.mmnnvvnm.\:;,.                           ..,,;;;/.mmnnnmm.\
    \ mmnnnvvnm.\::;;,                    .,;;;;;;;;/.mmmnnvvnnm.|
     \`mmnnnvvnm.\::;::.sSSs      sSSs ,;;;;;;;;;;/.mmmnnvvvnnmm'/
       \`mmnnnvnm.\:::::SSSS,,,,,,SSSS:::::::;;;/.mmmnnvvvnnmmm'/
          \`mnvvnm.\::%%%;;;;;;;;;;;%%%%:::::;/.mnnvvvvnnmmmmm'/
             \`mmmm.%%;;;;;%%%%%%%%%%%%%%%::/.mnnvvvnnmmmmm'/ '
                \`%%;;;;%%%%s&&&&&&&&&s%%%%mmmnnnmmmmmm'/ '
     |           `%;;;%%%%s&&.%%%%%%.%&&%mmmmmmmmmm'/ '
\    |    /       %;;%%%%&&.%;`    '%.&&%%%////// '
  \  |  /         %%%%%%s&.%%   x   %.&&%%%%%//%
    \  .:::::.  ,;%%%%s&&&&.%;     ;.&&%%%%%%%%/,
-!!!- ::#:::::%%%%%%s&&&&&&&&&&&&&&&&&%%%%%%%%%%%
    / :##:::::&&&&&&&&&&&&&&&&&&&&&%%%%%%%%%%%%%%,
  /  | `:#:::&&&&&&&&&&&&&&&&&&&&&&&&%%%%%%%%%%%%%
     |       `&&&&&&&&&,&&&&&&&&&&&&SS%%%%%%%%%%%%%
               `~~~~~'~~        SSSSSSS%%%%%%%%%%%%%
                               SSSSSSSS%%%%%%%%%%%%%%
                              SSSSSSSSSS%%%%%%%%%%%%%.
                            SSSSSSSSSSSS%%%%%%%%%%%%%%
                          SSSSSSSSSSSSS%%%%%%%%%%%%%%%.
                        SSSSSSSSSSSSSSS%%%%%%%%%%%%%%%%
                      SSSSSSSSSSSSSSSS%%%%%%%%%%%%%%%%%.
                    SSSSSSSSSSSSSSSSS%%%%%%%%%%%%%%%%%%%
                  SSSSSSSSSSSSSSSSSS%%%%%%%%%%%%%%%%%%%%.

                          WELCOME TO DASHLAME

1. Create a new password archive
2. Add a password to an archive
3. Access a password from an existing archive
1
Please enter your archive name: cawayui
Getting random data from atmospheric noise and mouse movements..........
This is your passphrase : sabally discombobulation
Please remember it or you will lose all your passwords.
Archive created successfully.

パスワード追加

[snip]

1. Create a new password archive
2. Add a password to an archive
3. Access a password from an existing archive
2
Please enter your archive name: cawayui
Please enter your passphrase: sabally discombobulation
Website: satto.hatenadiary.com
Username: satto1237
Password: pass
Update done.

パスワード確認

[snip]

1. Create a new password archive
2. Add a password to an archive
3. Access a password from an existing archive
3
Please enter your archive name: cawayui
Please enter your passphrase: sabally discombobulation
Website: satto.hatenadiary.com
satto1237 : pass

生成ファイル確認

> file cawayui.dla
cawayui.dla: data
> head cawayui.dla
IZ���]6���)��9-ei�l�00���ײZ��A\�L�
eKFp�1�G&z]�S�0��9��
>D�����OFK��` ��O��0{��    �{��̵�_FZ
�ןy�|g��
{>�z�A������}yX����>�%oH�"�f7�y�i�^�0"M��AF�=�ʋT�dA�&W|?�w�������R��:{Y,�H� �xM�j�
����S\�0����/(�D��'���� 9��?]#���Ṳ���1
Q��OI��ퟳ  �e���8R�A���y�*��q�-A������i�#zѕp!e��/]gv��U�t�5��7�#�RXD
                                                                         ���B�#�J�m�&�߯��30M�x���o�B+��(�"S�Ow�K��
Q"~�                                                                                                             �^1��%"1N�[�MR�+q̏Fm"��.�GbY��
NN}S������b��$|����)`�R�B��<��#���{��j�d���?>�H��)q-�x���Eԩ  !��i��s�A>i������n�l?�U�#�0�g
Tէ�v{O��y�|χ+�ƒ&[�_�;�.!җ��o'��[�%���:$
2UfjW�j�4{�qjƥB���.�{aj���]?.���;g$W�d���ūm���;wM�BY����]C��ޖ Ns�)[�I�y-r(��f�U�o
I4ٱ*ݢ(&à-N�E�^0���,���|ť������~Ae8X�:y���"沬��B{�k�Ka%�I���    �����^޽ٱux� ��?���[�љ���[�]��    ^(���UÒ�,:�����o��⪻�B�R�7�õXM]r5�P��O�Q����]��z���L2��O�����-B���
        �N��W;a�
                �P���f��L��FkYU�Xt�T���,������j��ς8G!�?�mvW��Ȩ�w���.���|����`y5�&�
                                                                                   S�{�1o����+ũ]/nڎ�    �

ソースコードを読む限り新しいアーカイブを作成するときに謎データを書き込んでいるのでAddしたユーザとパスワード以外にもユーザデータが存在すると考えられます.
また,accessArchive内でデータを読み出した後(decrypt_archiveした後)にencrypt_archiveしているためこの処理をコメントアウトすることでdecryptされたdbファイルにアクセスできるようになることが分かります.

> sqlite3
sqlite> .open cawayui.db
sqlite> .tables
Passwords
sqlite> .schema
CREATE TABLE Passwords(website TEXT, username TEXT, password TEXT);
sqlite> SELECT * FROM Passwords;
website_example|username|INSA{Tis_bUt_a_SCr4tch}
satto.hatenadiary.com|satto1237|pass

INSA{Tis_bUt_a_SCr4tch}

intergover [Pwn]

I hope you know how integers are stored.

ssh -i <your_keyfile> -p 2223 user@intergover.ctf.insecurity-insa.fr To find your keyfile, look into your profile on this website.

> ssh -i ~/.ssh/id_inshack -p 2223 user@intergover.ctf.insecurity-insa.fr
 ___           _   _            _      ____   ___  _  ___
|_ _|_ __  ___| | | | __ _  ___| | __ |___ \ / _ \/ |/ _ \
| || '_ \/ __| |_| |/ _` |/ __| |/ /   __) | | | | | (_) |
| || | | \__ \  _  | (_| | (__|   <   / __/| |_| | |\__, |
|___|_| |_|___/_| |_|\__,_|\___|_|\_\ |_____|\___/|_|  /_/

===========================================================

      You are accessing a sandbox challenge over SSH
        This sandbox will be killed soon enough.
       Please wait while we launch your sandbox...

===========================================================

Give me one param: 1127
No, I can't give you the flag: 1127

アプローチ:読む

与えられたバイナリファイルをidaで開くと242をパラメータとして与えればいいことが分かります.

f:id:satto1237:20190507221625p:plain

[snip]

Give me one param: 242
INSA{B3_v3rY_c4r3fUL_w1tH_uR_1nt3g3r_bR0}

INSA{B3_v3rY_c4r3fUL_w1tH_uR_1nt3g3r_bR0}

signed or not signed [Pwn]

Signed or not signed, this is the question :) ssh -i <your_keyfile> -p 2228 user@signed-or-not-signed.ctf.insecurity-insa.fr To find your keyfile, look into your profile on this website.

アプローチ:unsigned

> ssh -i ~/.ssh/id_inshack -p 2228 user@signed-or-not-signed.ctf.insecurity-insa.fr
- ___           _   _            _      ____   ___  _  ___
|_ _|_ __  ___| | | | __ _  ___| | __ |___ \ / _ \/ |/ _ \
| || '_ \/ __| |_| |/ _` |/ __| |/ /   __) | | | | | (_) |
| || | | \__ \  _  | (_| | (__|   <   / __/| |_| | |\__, |
|___|_| |_|___/_| |_|\__,_|\___|_|\_\ |_____|\___/|_|  /_/

===========================================================

      You are accessing a sandbox challenge over SSH
        This sandbox will be killed soon enough.
       Please wait while we launch your sandbox...

===========================================================

Please give me a number: 1127
Bro, it's really too big.

とりあえず与えられたバイナリファイルをidaで開きます.

f:id:satto1237:20190507233230p:plain

f:id:satto1237:20190507234941p:plain

10以下かつ64870である数値を入力しなければいけませんがunsignedであることを利用すればいけます.

[snip]

Please give me a number:-666
INSA{Th3_qU3sTi0n_1s_S1gN3d_0r_x90}
Connection to signed-or-not-signed.ctf.insecurity-insa.fr closed.

INSA{Th3_qU3sTi0n_1s_S1gN3d_0r_x90}

Yet Another RSA Challenge - Part 1 [Crypto]

Buy an encrypted flag, get a (almost intact) prime factor for free !

You can find a harder version of this challenge in the Programming category.

import subprocess
p = subprocess.check_output('openssl prime -generate -bits 2048 -hex')
q = subprocess.check_output('openssl prime -generate -bits 2048 -hex')
flag = int('INSA{REDACTED}'.encode('hex'), 16)

N = int(p,16) * int(q,16)
print N
print '0x'+p.replace('9F','FC')
print pow(flag,65537,N)
719579745653303119025873098043848913976880838286635817351790189702008424828505522253331968992725441130409959387942238566082746772468987336980704680915524591881919460709921709513741059003955050088052599067720107149755856317364317707629467090624585752920523062378696431510814381603360130752588995217840721808871896469275562085215852034302374902524921137398710508865248881286824902780186249148613287250056380811479959269915786545911048030947364841177976623684660771594747297272818410589981294227084173316280447729440036251406684111603371364957690353449585185893322538541593242187738587675489180722498945337715511212885934126635221601469699184812336984707723198731876940991485904637481371763302337637617744175461566445514603405016576604569057507997291470369704260553992902776099599438704680775883984720946337235834374667842758010444010254965664863296455406931885650448386682827401907759661117637294838753325610213809162253020362015045242003388829769019579522792182295457962911430276020610658073659629786668639126004851910536565721128484604554703970965744790413684836096724064390486888113608024265771815004188203124405817878645103282802994701531113849607969243815078720289912255827700390198089699808626116357304202660642601149742427766381
0xDCC5A0BD3A1FC0BEB0DA1C2E8CF6B474481B7C12849B76E03C4C946724DB577D2825D6AA193DB559BC9DBABE1DDE8B5E7805E48749EF002F622F7CDBD7853B200E2A027E87E331AFCFD066ED9900F1E5F5E5196A451A6F9E329EB889D773F08E5FBF45AACB818FD186DD74626180294DCC31805A88D1B71DE5BFEF3ED01F12678D906A833A78EDCE9BDAF22BBE45C0BFB7A82AFE42C1C3B8581C83BF43DFE31BFD81527E507686956458905CC9A660604552A060109DC81D01F229A264AB67C6D7168721AB36DE769CEAFB97F238050193EC942078DDF5329A387F46253A4411A9C8BB71F9AEB11AC9623E41C14FCD2739D76E69283E57DDB11FC531B4611EE3
596380963583874022971492302071822444225514552231574984926542429117396590795270181084030717066220888052607057994262255729890598322976783889090993129161030148064314476199052180347747135088933481343974996843632511300255010825580875930722684714290535684951679115573751200980708359500292172387447570080875531002842462002727646367063816531958020271149645805755077133231395881833164790825731218786554806777097126212126561056170733032553159740167058242065879953688453169613384659653035659118823444582576657499974059388261153064772228570460351169216103620379299362366574826080703907036316546232196313193923841110510170689800892941998845140534954264505413254429240789223724066502818922164419890197058252325607667959185100118251170368909192832882776642565026481260424714348087206462283972676596101498123547647078981435969530082351104111747783346230914935599764345176602456069568419879060577771404946743580809330315332836749661503035076868102720709045692483171306425207758972682717326821412843569770615848397477633761506670219845039890098105484693890695897858251238713238301401843678654564558196040100908796513657968507381392735855990706254646471937809011610992016368630851454275478216664521360246605400986428230407975530880206404171034278692756

アプローチ:全探索

配布されたプログラムを確認すると素数p9FFCに置換していることが分かります.
置換後のpFCの出現数は4なので元々FCだった場合も考慮し計算すると置換前のパターン数は16になることが分かります.
あとは全探索して正規のpを見つければ終わりです.

以下が頭ガバガバソルバです.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from Crypto.Util.number import *

str_p = 'DCC5A0BD3A1FC0BEB0DA1C2E8CF6B474481B7C12849B76E03C4C946724DB577D2825D6AA193DB559BC9DBABE1DDE8B5E7805E48749EF002F622F7CDBD7853B200E2A027E87E331AFCFD066ED9900F1E5F5E5196A451A6F9E329EB889D773F08E5FBF45AACB818FD186DD74626180294DCC31805A88D1B71DE5BFEF3ED01F12678D906A833A78EDCE9BDAF22BBE45C0BFB7A82AFE42C1C3B8581C83BF43DFE31BFD81527E507686956458905CC9A660604552A060109DC81D01F229A264AB67C6D7168721AB36DE769CEAFB97F238050193EC942078DDF5329A387F46253A4411A9C8BB71F9AEB11AC9623E41C14FCD2739D76E69283E57DDB11FC531B4611EE3'
n = 719579745653303119025873098043848913976880838286635817351790189702008424828505522253331968992725441130409959387942238566082746772468987336980704680915524591881919460709921709513741059003955050088052599067720107149755856317364317707629467090624585752920523062378696431510814381603360130752588995217840721808871896469275562085215852034302374902524921137398710508865248881286824902780186249148613287250056380811479959269915786545911048030947364841177976623684660771594747297272818410589981294227084173316280447729440036251406684111603371364957690353449585185893322538541593242187738587675489180722498945337715511212885934126635221601469699184812336984707723198731876940991485904637481371763302337637617744175461566445514603405016576604569057507997291470369704260553992902776099599438704680775883984720946337235834374667842758010444010254965664863296455406931885650448386682827401907759661117637294838753325610213809162253020362015045242003388829769019579522792182295457962911430276020610658073659629786668639126004851910536565721128484604554703970965744790413684836096724064390486888113608024265771815004188203124405817878645103282802994701531113849607969243815078720289912255827700390198089699808626116357304202660642601149742427766381
e = 65537
c = 596380963583874022971492302071822444225514552231574984926542429117396590795270181084030717066220888052607057994262255729890598322976783889090993129161030148064314476199052180347747135088933481343974996843632511300255010825580875930722684714290535684951679115573751200980708359500292172387447570080875531002842462002727646367063816531958020271149645805755077133231395881833164790825731218786554806777097126212126561056170733032553159740167058242065879953688453169613384659653035659118823444582576657499974059388261153064772228570460351169216103620379299362366574826080703907036316546232196313193923841110510170689800892941998845140534954264505413254429240789223724066502818922164419890197058252325607667959185100118251170368909192832882776642565026481260424714348087206462283972676596101498123547647078981435969530082351104111747783346230914935599764345176602456069568419879060577771404946743580809330315332836749661503035076868102720709045692483171306425207758972682717326821412843569770615848397477633761506670219845039890098105484693890695897858251238713238301401843678654564558196040100908796513657968507381392735855990706254646471937809011610992016368630851454275478216664521360246605400986428230407975530880206404171034278692756
index = [11, 143, 475, 499]


def searchP(s, d):
    if d == 4:
        p = int(s,16)
        if n % p == 0:
            print(p)
    else:
        searchP(s[:index[d]] + 'FC' + s[index[d]+2:], d + 1)
        searchP(s[:index[d]] + '9F' + s[index[d]+2:], d + 1)

def solve():
    p = 27869881035956015184979178092922248885674897320108269064145135676677416930908750101386898785101159450077433625380803555071301130739332256486285289470097290409044426739584302074834857801721989648648799253740641480496433764509396039330395579654527851232078667173592401475356727873045602595552393666889257027478385213547302885118341490346766830846876201911076530008127691612594913799272782226366932754058372641521481522494577124999360890113778202218378165756595787931498460866236502220175258385407478826827807650036729385244897815805427164434537088709092238894902485613707990645011133078730017425033369999448757627854563
    q = n // p
    phi = (p - 1) * (q - 1)
    d = inverse(e, phi)
    m = pow(c, d, n)
    print(long_to_bytes(m))

if __name__ == '__main__':
    searchP(str_p, 0)
    solve()
27869881035956015184979178092922248885674897320108269064145135676677416930908750101386898785101159450077433625380803555071301130739332256486285289470097290409044426739584302074834857801721989648648799253740641480496433764509396039330395579654527851232078667173592401475356727873045602595552393666889257027478385213547302885118341490346766830846876201911076530008127691612594913799272782226366932754058372641521481522494577124999360890113778202218378165756595787931498460866236502220175258385407478826827807650036729385244897815805427164434537088709092238894902485613707990645011133078730017425033369999448757627854563
b'INSA{I_w1ll_us3_OTp_n3xT_T1M3}'

INSA{I_w1ll_us3_OTp_n3xT_T1M3}

まとめ

  • また簡単な問題しかとけなかった
  • べんきょうする

ツ令和CTF Write-up (供養)

はじめに

令和CTFに参加しました.

成績

Misc全完して187位(かなしい)

f:id:satto1237:20190501022246p:plain

フラグの例は?

平成最後の最後、令和最初のSECCON CTFにようこそ。 フラグはSECCON{reiwa}です。

アプローチ:問題文を読む

SECCON{reiwa}

bREInWAc

元号が変わる。記号も変わる。

令和和和和和和和和和和和和和和和和「令和
和和和和令和和和和令和和和和和和和令和和
和和和和令和和平平平平平成」令和和和。令
和和和和和。成成。。平成成成成。成。令令
和和和和和和和和和和和。令和和。平平平和
和和和。令和和。和和和和。令令和和和和和
和和和和和和和。平平平和和和和和和和和和
和和和和。成成成成成成成成。令成成成成成
成成成。令令。成成成成成。成成成成成成。
令和。平平和和。令令令和和和和和和和和和
和。

アプローチ:適当に置換して実行

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

if __name__ == '__main__':
    dic = {'令':'>', '和':'+', '「':'[', '」':']', '。':'.', '平':'<', '成':'-'}

    with open('./flag.bw') as f:
        lines = [s.strip() for s in f.readlines()]

    flag = ''
    for line in lines:
        for x in line:
            flag += dic[x]

    print(flag)
>++++++++++++++++[>+++++>++++>+++++++>++++++>++<<<<<-]>+++.>+++++.--..<----.-.>>+++++++++++.>++.<<<++++.>++.++++.>>++++++++++++.<<<+++++++++++++.--------.>--------.>>.-----.------.>+.<<++.>>>++++++++++.

sange.fi

SECCON{bREIn_WAnic!}

零は?

nc zerois-o-reiwa.seccon.jp 23615

example

[1/100]
0=40-?
?=40
[2/100]
0=45*18-?
?=

アプローチ:SymPyに頑張ってもらう

www.sympy.org

100問解くとflagがもらえるっぽいので100問解くソルバを書く.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from socket import *
from sympy import *
from sympy.parsing.sympy_parser import parse_expr

if __name__ == '__main__':

    s = socket(AF_INET, SOCK_STREAM)
    s.connect(('zerois-o-reiwa.seccon.jp', 23615))

    for i in range(101):
        rec = s.recv(1024).decode('utf-8')
        print(rec)
        rec = s.recv(1024).decode('utf-8')
        prob = rec.split('\n')[0].split('=')[1].replace('?','x')
        print(prob)
        ans = solve(Eq(parse_expr(prob),0))
        if ans == True:
            print('True')
            s.send(str(0).encode('utf-8') + b'\n')
        else:
            print(ans[0])
            s.send(str(ans[0]).encode('utf-8') + b'\n')
[snip]

[98/100]

96-39+52*89-84+68*73-87+30*79+79*99-61*34+47-62-84*18+77-99*61+5+2*72-38*55+48-88*99-21+30*18+60-7+52-29*70*50-15+88-87+8*34+55*70-3+18*64-55+37*22-10*35+82-43+18*6-40+65*89-6-0+43*76+85*41-37-42*65+69*96+19-38*70-4+66-92*86+47*2-64+36*41+71-23-57+90*8*30-37+25+32*23-47+63-15*94*32+x
110987
[99/100]

60-87+44*7+51-34*80+70*43-18-25*4+97*63-35+16+93*51-8*36-57+47-76+72*62*17-60+79-96+58*92+97*58-96-4*51+17-25+9*35-26*61+39+67*15-36-51+90*71+40-77*30*98+47-3*21-23+12*88-74+20-70+35*34-82+49*97-31*34+19+11*74-68+56-9*17-36*94+61*20+58-16-81*24+45-99+46*94*66-0+8+10-28*46+x*0-62-84+31-163413
True
[100/100]

12+37-58*62+51*1-26+1-2*35-50+63*36*23-18+16-36+88*65+77*48-74+50-30*53-68*95+12-29*95+32+72-17*36*62-22+3-96+14*28+27*83-97*87-55+11+75*35-67-66*15+6*3+17-26-13+14*89*45+3-67+17-88*48-45*71+68-40+50*2*91+14-42-18+51*48*43-64+61*58+51-22*82-61+89+28-93*51+68*54-91*6-17+62+10*35-88-0*x+2-168262
True
Congratulations!

The flag is SECCON{REIWA_is_not_ZERO_IS}.
(Enter RETURN key if connection is not disconnected)

SECCON{REIWA_is_not_ZERO_IS}

まとめ

  • 平成終わったのにQRコード解けなくてツ令和

ångstromCTF 2019 Write-up

はじめに

2019/04/20 ~ 2019/04/25 に開催されたångstromCTFにチーム(NekoChanNano!)で参加しました.
今回は自分が解いた問題についてのWrite-upです.

成績

59位でした (1問以上解いた1374チーム中).

f:id:satto1237:20190426201003p:plain

Misc

IRC [10pts, 895solves]

We have an IRC channel, #angstromctf on freenode! Join us to ask questions, have fun, and get a flag.

アプローチ:読む

actf{like_discord_but_worse}

Survey [10pts, 363solves]

We have a short survey for you to fill out for a flag! Even though it's a single challenge, we encourage every individual to submit a response.

アプローチ:wget

アンケートに回答するとflagをもらえるみたいですが回答しなくてもとれます.

f:id:satto1237:20190426202116p:plain

> wget https://forms.gle/72by8ViMv3yM9JeU6
--2019-04-26 20:22:28--  https://forms.gle/72by8ViMv3yM9JeU6
Resolving forms.gle (forms.gle)... 151.101.65.195, 151.101.1.195
Connecting to forms.gle (forms.gle)|151.101.65.195|:443... connected.
HTTP request sent, awaiting response... 302 Found
Location: https://docs.google.com/forms/d/e/1FAIpQLSfGgWe6Gl1mcyOnD59NfT2luWa4N5fVKyhlTGszZ1FZyT_stw/viewform?usp=send_form [following]
--2019-04-26 20:22:29--  https://docs.google.com/forms/d/e/1FAIpQLSfGgWe6Gl1mcyOnD59NfT2luWa4N5fVKyhlTGszZ1FZyT_stw/viewform?usp=send_form
Resolving docs.google.com (docs.google.com)... 172.217.31.174
Connecting to docs.google.com (docs.google.com)|172.217.31.174|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]
Saving to: `72by8ViMv3yM9JeU6'

72by8ViMv3yM9JeU6                         [ <=>                                                                    ] 441.15K  --.-KB/s    in 0.1s

2019-04-26 20:22:29 (4.22 MB/s) - `72by8ViMv3yM9JeU6' saved [451738]

> grep "actf{" 72by8ViMv3yM9JeU6
,["Thank you for completing our survey! We hope you enjoyed ångstromCTF, and as always: actf{we_hope_to_see_you_next_year}",0,0,0,0]

actf{we_hope_to_see_you_next_year}

Crypto

Classy Cipher [20pts, 718solves]

Every CTF starts off with a Caesar cipher, but we're more classy.

from secret import flag, shift

def encrypt(d, s):
    e = ''
    for c in d:
        e += chr((ord(c)+s) % 0xff)
    return e

assert encrypt(flag, shift) == ':<M?TLH8<A:KFBG@V'

アプローチ:シフトを探索

シフト数が不明ですがflagフォーマットをベースに全探索すれば解けます.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# :<M?TLH8<A:KFBG@V
# actf{***********}

def encrypt(d, s):
    e = ''
    for c in d:
        e += chr((ord(c)+s) % 0xff)
    return e

def searchShift():
    flag = 'actf{'

    for shift in range(0xff):
        enc = encrypt(flag, shift)
        if enc == ':<M?T':
            print(shift)
            return shift

if __name__ == '__main__':
    enc_flag = ':<M?TLH8<A:KFBG@V'
    shift = searchShift()
    dec_flag = ''

    for e in enc_flag:
        dec_flag += chr(ord(e) - shift + 0xff)

    print(dec_flag)
> python solve.py
216
actf{so_charming}

actf{so_charming}

Really Secure Algorithm [30pts, 548solves]

I found this flag somewhere when I was taking a walk, but it seems to have been encrypted with this Really Secure Algorithm!

p = 8337989838551614633430029371803892077156162494012474856684174381868510024755832450406936717727195184311114937042673575494843631977970586746618123352329889
q = 7755060911995462151580541927524289685569492828780752345560845093073545403776129013139174889414744570087561926915046519199304042166351530778365529171009493
e = 65537
c = 7022848098469230958320047471938217952907600532361296142412318653611729265921488278588086423574875352145477376594391159805651080223698576708934993951618464460109422377329972737876060167903857613763294932326619266281725900497427458047861973153012506595691389361443123047595975834017549312356282859235890330349

アプローチ:普通にRSA暗号を復号する

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import gmpy
import binascii

if __name__ == '__main__':
    p = 8337989838551614633430029371803892077156162494012474856684174381868510024755832450406936717727195184311114937042673575494843631977970586746618123352329889
    q = 7755060911995462151580541927524289685569492828780752345560845093073545403776129013139174889414744570087561926915046519199304042166351530778365529171009493
    e = 65537
    c = 7022848098469230958320047471938217952907600532361296142412318653611729265921488278588086423574875352145477376594391159805651080223698576708934993951618464460109422377329972737876060167903857613763294932326619266281725900497427458047861973153012506595691389361443123047595975834017549312356282859235890330349
    n = p * q

    l = gmpy.lcm(p-1, q-1)
    gcd, u, v = gmpy.gcdext(e, l)

    while u < 0:
        u += l

    m = pow(c, u, n)
    print(m)
    print(binascii.unhexlify(hex(m)[2:]))
> python solve.py
172070576318285777902351017014850513943749891499547486454156569029770767741
b'actf{really_securent_algorithm}'

actf{really_securent_algorithm}

Half and Half [50pts, 348solves]

Mm, coffee. Best served with half and half!

from secret import flag

def xor(x, y):
    o = ''
    for i in range(len(x)):
        o += chr(ord(x[i])^ord(y[i]))
    return o

assert len(flag) % 2 == 0

half = len(flag)//2
milk = flag[:half]
cream = flag[half:]

assert xor(milk, cream) == '\x15\x02\x07\x12\x1e\x100\x01\t\n\x01"'

アプローチ:排他的論理和エスパー

encoderを読むと次のことが分かります.

以上を考慮するとflagフォーマットから

milk  -> actf{*******
cream -> ***********}
milk  -> actf{******_
cream -> taste******}

となります.

次に6文字の単語を推測しなければいけませんが,ここは問題文にあるcoffeeが入ります(エスパー).

# -*- coding: utf-8 -*-
#!/usr/bin/env python3

def decrypt(known_flag, mc_xor):
    partial_flag = ''
    for f, x in zip(known_flag, mc_xor):
        partial_flag += chr(ord(f) ^ x)

    return partial_flag

if __name__ == '__main__':

    partial_flag1 = decrypt('}',b'"')
    partial_flag2 = decrypt('actf{', b'\x15\x02\x07\x12\x1e')
    partial_flag3 = decrypt('coffee', b'\x100\x01\t\n\x01')

    print('actf{' + 'coffee' + partial_flag1 + partial_flag2 + partial_flag3 + '}')
> python solve.py
actf{coffee_tastes_good}

actf{coffee_tastes_good}

Runes [70pts, 235solves]

The year is 20XX. ångstromCTF only has pwn challenges, and the winner is solely determined by who can establish a socket connection first. In the data remnants of an ancient hard disk, we've recovered a string of letters and digits. The only clue is the etching on the disk's surface: Paillier.

n: 99157116611790833573985267443453374677300242114595736901854871276546481648883
g: 99157116611790833573985267443453374677300242114595736901854871276546481648884
c: 2433283484328067719826123652791700922735828879195114568755579061061723786565164234075183183699826399799223318790711772573290060335232568738641793425546869

アプローチ:Paillier暗号

Paillier暗号については以下を参照してください(詳しくまとめられています).

elliptic-shiho.hatenablog.com

256bit程度のnが与えられますがFacotrDBでサクッと素因数分解できます.

あとはやるだけです.

# -*- coding: utf-8 -*-
#!/usr/bin/env python3

import gmpy
import binascii

def L(u,n):
    return (u-1) // n

def decrypt():
    n = 99157116611790833573985267443453374677300242114595736901854871276546481648883
    g = 99157116611790833573985267443453374677300242114595736901854871276546481648884
    c = 2433283484328067719826123652791700922735828879195114568755579061061723786565164234075183183699826399799223318790711772573290060335232568738641793425546869
    p = 310013024566643256138761337388255591613
    q = 319848228152346890121384041219876391791

    lmd = gmpy.lcm(p-1, q-1)
    m = L(pow(c, lmd, n*n), n) * gmpy.invert(L(pow(g, lmd, n*n), n), n) % n

    return m

if __name__ == '__main__':

    m = decrypt()
    print(binascii.unhexlify(hex(m)[2:]))
    
> python solve.py
b'actf{crypto_lives}'

actf{crypto_lives}

Rev

Intro to Rev [10pts, 961solves]

Many of our problems will require you to run Linux executable files (ELFs). This problem will help you figure out how to do it on our shell server. Use your credentials to log in, then navigate to /problems/2019/intro_to_rev. Run the executable and follow its instructions to get a flag!

アプローチ:問題をよむ

> ./intro_to_rev
Welcome to your first reversing challenge!

If you are seeing this, then you already ran the file! Let's try some input next.
Enter the word 'angstrom' to continue:
angstrom
Good job! Some programs might also want you to enter information with a command line argument.

When you run a file, command line arguments are given by running './introToRev argument1 argument2' where you replace each argument with a desired string.

To get the flag for this problem, run this file again with the arguments 'binary' and 'reversing' (don't put the quotes).
> ./intro_to_rev binary reversing
Welcome to your first reversing challenge!

If you are seeing this, then you already ran the file! Let's try some input next.
Enter the word 'angstrom' to continue:
angstrom
Good job! Some programs might also want you to enter information with a command line argument.

When you run a file, command line arguments are given by running './introToRev argument1 argument2' where you replace each argument with a desired string.

Good job, now go solve some real problems!
actf{this_is_only_the_beginning}

actf{this_is_only_the_beginning}

I Like It [40pts, 606solves]

Now I like dollars, I like diamonds, I like ints, I like strings. Make Cardi like it please.

> file i_like_it
i_like_it: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32, BuildID[sha1]=5b91e9b31dffd010d9f32b21580ac3675db92a62, not stripped

アプローチ:2次方程式をとく?

> ./i_like_it
I like the string that I'm thinking of: 
aaaa
Cardi don't like that.

とりあえずidaで開くと

f:id:satto1237:20190427191913p:plain

f:id:satto1237:20190427191942p:plain

次のことが分かります.

  • I like the string that I'm thinking of: には okrrrrrrr
  • 以下の条件を満たす2つの整数を入力する
    •  a + b = 136
    •  a \times b = 3783
    •  a \lt b

したがって,2つの整数については  x^{2} - 136x + 3783 = 0 の解を入力すればいいことになります.

> ./i_like_it
I like the string that I'm thinking of: 
okrrrrrrr
I said I like it like that!
I like two integers that I'm thinking of (space separated): 
39 97
I said I like it like that!
Flag: actf{okrrrrrrr_39_97}

actf{okrrrrrrr_39_97}

One Bite [60pts, 521solves]

Whenever I have friends over, I love to brag about things that I can eat in a single bite. Can you give this program a tasty flag that fits the bill?

> file one_bite
one_bite: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32, BuildID[sha1]=1378c7ef8cdf59c2cbe4d84274295b2567a09e91, not stripped

アプローチ:XOR

> ./one_bite 
Give me a flag to eat: 
aaaaaaaaaa
That didn't taste so good :(

とりあえずidaで開くと

f:id:satto1237:20190427194721p:plain

次のことが分かります.

  • 入力文字列を1文字ずつ0x3cXORしてる
  • XORした結果が]_HZGUcHTURWcUQc[SUR[cHSc^YcOU_WAになるのがflag
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

def solve():
    target = ']_HZGUcHTURWcUQc[SUR[cHSc^YcOU_WA'
    flag = ''
    for x in target:
        flag += chr(ord(x) ^ 0x3c)

    print(flag)

if __name__ == '__main__':
    solve()
> python solve.py
actf{i_think_im_going_to_be_sick}

actf{i_think_im_going_to_be_sick}

High Quality Checks [110pts, 268solves]

After two break-ins to his shell server, kmh got super paranoid about a third! He's so paranoid that he abandoned the traditional password storage method and came up with this monstrosity! I reckon he used the flag as the password, can you find it?

> file high_quality_checks
high_quality_checks: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, BuildID[sha1]=e7556b55e0c73b4de8b3f387571dd59c3535a0ee, not stripped

アプローチ:Ghidraでデコンパイル

とりあえずidaで開くと
f:id:satto1237:20190427201745p:plain f:id:satto1237:20190427200107p:plain

次のことが分かります.

  • flag長は19文字
  • check関数はflagの判定を行っている
  • check関数の動作を理解するにはやる気と根気と時間が必要

ゆとりなのでGhidraデコンパイルします.

f:id:satto1237:20190427201552p:plain

undefined8 check(char *pcParm1)

{
  int iVar1;
  
  iVar1 = d(pcParm1 + 0xc);
  if ((((((iVar1 != 0) && (iVar1 = v((ulong)(uint)(int)*pcParm1), iVar1 != 0)) &&
        (iVar1 = u((ulong)(uint)(int)pcParm1[0x10],(ulong)(uint)(int)pcParm1[0x11],
                   (ulong)(uint)(int)pcParm1[0x11]), iVar1 != 0)) &&
       ((iVar1 = k((ulong)(uint)(int)pcParm1[5]), iVar1 == 0 &&
        (iVar1 = k((ulong)(uint)(int)pcParm1[9]), iVar1 == 0)))) &&
      ((iVar1 = w(pcParm1 + 1), iVar1 != 0 &&
       ((iVar1 = b(pcParm1,0x12), iVar1 != 0 && (iVar1 = b(pcParm1,4), iVar1 != 0)))))) &&
     ((iVar1 = z(pcParm1,0x6c), iVar1 != 0 && (iVar1 = s(pcParm1), iVar1 != 0)))) {
    return 1;
  }
  return 0;
}

大分読みやすくなりましたね.
check関数内の各関数の動作を読み解いてflag:*******************を復元していきます(文字は0-indexで数えます).

d関数
ulong d(int *piParm1)

{
  return (ulong)(*piParm1 == 0x30313763);
}

check関数でflagの12文字目以降を渡しているのでflagは************c710***となります.

n関数
ulong n(int iParm1)

{
  return (ulong)(uint)(iParm1 >> 1);
}

引数を1bit右シフトしてます.

v関数
ulong v(byte bParm1)

{
  int iVar1;
  
  iVar1 = n(0xac);
  return (ulong)((int)(char)(bParm1 ^ 0x37) == iVar1);
}

(0xac >> 1) ^ 0x37 = 97なのでflagはa***********c710***となります.

o関数
ulong o(char cParm1)

{
  int local_c;
  
  if (cParm1 < 'a') {
    local_c = (int)cParm1 + -0x30;
  }
  else {
    local_c = (int)cParm1 + -0x57;
  }
  local_c = (int)cParm1 * 0x100 + local_c;
  return (ulong)(uint)(local_c * 0x10001);
}

文字を引数として渡すと変換結果(数値)を返してくれます.

u関数
undefined8 u(char cParm1,char cParm2)

{
  int iVar1;
  
  iVar1 = n(0xdc);
  if (((int)cParm1 == iVar1) && (iVar1 = o((ulong)(uint)(int)cParm2), iVar1 == 0x35053505)) {
    return 1;
  }
  return 0;
}

check関数ではu関数の引数としてflagの16文字目と17文字目を渡しています.

n(oxdc)は110なのでflagの16文字目はnとなることが分かり,o関数の返り値が0x35053505になる文字は5なのでflagの17文字目は5となります(a***********c710n5*).

k関数
ulong k(char cParm1)

{
  int iVar1;
  
  iVar1 = o((ulong)(uint)(int)cParm1);
  return (ulong)(iVar1 != 0x660f660f);
}

check関数ではflagの5文字目と9文字目を引数としてk関数に渡しています.
o関数が0x660f660になる文字はfなのでflagはa****f***f**c710n5*となります.

w関数
ulong w(char *pcParm1)

{
  return (ulong)((int)*pcParm1 + (int)pcParm1[2] * 0x10000 + (int)pcParm1[1] * 0x100 == 0x667463);
}

check関数ではflagの1文字目以降を引数としてw関数に渡しています.
0x667463ctfなのでflagはactf*f***f**c710n5*となります.

e関数
ulong e(int iParm1)

{
  uint uVar1;
  
  uVar1 = (uint)(iParm1 >> 0x1f) >> 0x1e;
  uVar1 = (iParm1 + uVar1 & 3) - uVar1;
  return (ulong)(uint)((int)(uVar1 + (uVar1 >> 0x1f)) >> 1);
}

引数に対する変換結果を返してくれます.

b関数
ulong b(long lParm1,uint uParm2)

{
  char cVar1;
  int iVar2;
  int iVar3;
  
  cVar1 = *(char *)(lParm1 + (long)(int)uParm2);
  iVar2 = n(0xf6);
  iVar3 = e((ulong)uParm2);
  return (ulong)((int)cVar1 == iVar3 * 2 + iVar2);
}

check関数ではflagと数値(0x12,4)を引数としてb関数に渡しています.
引数が0x12の場合は18文字目が}になることが分かり,引数が4の場合は4文字目が{になることが分かります. そのためflagactf{f***f**c710n5}となります.

z関数
undefined8 z(long lParm1,char cParm2)

{
  char cVar1;
  int iVar2;
  char local_17;
  char local_16;
  uint local_14;
  
  local_17 = 0;
  local_16 = 0;
  local_14 = 0;
  while ((int)local_14 < 8) {
    cVar1 = (char)(((int)cParm2 & 1 << ((byte)local_14 & 0x1f)) >> ((byte)local_14 & 0x1f));
    if ((local_14 & 1) == 0) {
      local_16 = local_16 +
                 (char)((int)cVar1 << ((byte)((int)(local_14 + (local_14 >> 0x1f)) >> 1) & 0x1f));
    }
    else {
      local_17 = local_17 +
                 (char)((int)cVar1 << ((byte)((int)(local_14 + (local_14 >> 0x1f)) >> 1) & 0x1f));
    }
    local_14 = local_14 + 1;
  }
  if ((((*(char *)(lParm1 + (long)local_17) == 'u') &&
       (cVar1 = *(char *)(lParm1 + (long)local_17 + 1), iVar2 = n(0xdc), (int)cVar1 == iVar2)) &&
      (cVar1 = *(char *)(lParm1 + (long)local_16), iVar2 = n(0xea), (int)cVar1 == iVar2)) &&
     (*(char *)(lParm1 + (long)local_16 + 1) == 'n')) {
    return 1;
  }
  return 0;
}

一見ややこしい処理をしているように感じますが引数が0x6cなのでflagの6,7,10,11文字目がそれぞれu,n,u,nになっているか確認しているだけです.
そのためflagactf{fun*func710n5}となります.

s関数
ulong s(long lParm1)

{
  int iVar1;
  int local_10;
  int local_c;
  
  local_10 = 0;
  local_c = 0;
  while (local_c < 0x13) {
    iVar1 = o((ulong)(uint)(int)*(char *)(lParm1 + (long)local_c));
    if (iVar1 == 0x5f2f5f2f) {
      local_10 = local_10 + local_c + 1;
    }
    local_c = local_c + 1;
  }
  return (ulong)(local_10 == 9);
}

flagの8文字目を引数としたo関数の返り値が0x5f2f5f2fになっていればいいことが分かります.
o関数の返り値が0x5f2f5f2fになる文字は_なので最終的なflagactf{fun_func710n5}となります.

actf{fun_func710n5}

まとめ

  • Crypto担当なのにCrypto全く解けなくて申し訳ない😢
  • 就活のせいでまともに参加できなくて申し訳ない😢
  • 簡単な問題しか解けないのでWrite-up読んで勉強する
  • 今更感あるけどGhidraすごくないですか?

チームメンバのWrite-up

madousho.hatenadiary.jp

szarny.hatenablog.com

WPICTF 2019 Write-up

はじめに

2019/04/13 ~ 2019/04/15 に開催されたWPICTFに1人で参加しました.

成績

9問解いて88位(1問以上正解した586チーム中)でした.

f:id:satto1237:20190415141833p:plain f:id:satto1237:20190415141857p:plain

can you read [Intro, 1pts, 496solves]

WPI{y3s_y0u_cAN_r33d}

All flags, unless otherwise stated, will be in the form WPI{S0M3_flag_here}

WPI{y3s_y0u_cAN_r33d}

Discord [Intro, 5pts, 370solves]

https://discord.gg/pqg8qjw

Look at the pinned msgs.

WPI{Welcome_to_our_discord}

Source pt1 [Pwn, 100pts, 132solves]

ssh source@source.wpictf.xyz -p 31337 (or 31338 or 31339).
Password is sourcelocker

Here is your babybuff.

アプローチ:BOF

sshするとhttps://www.imdb.com/title/tt0945513/にアクセスするためのパスワードの入力を求められます.

> ssh source@source.wpictf.xyz -p 31337
source@source.wpictf.xyz's password:
Enter the password to get access to https://www.imdb.com/title/tt0945513/
A
Pasword auth failed
exiting
Connection to source.wpictf.xyz closed.

babybuffとか書かれているので何も考えずにBOFしそうな文字列を流します.

> ssh source@source.wpictf.xyz -p 31337
source@source.wpictf.xyz's password:
Enter the password to get access to https://www.imdb.com/title/tt0945513/
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

予想通りソースコードが表示されます.

#define _GNU_SOURCE
#include <stdio.h>
#include <unistd.h>

#include <stdlib.h>
#include <string.h>

//compiled with gcc source.c -o source -fno-stack-protector -no-pie
//gcc (Ubuntu 7.3.0-27ubuntu1~18.04) 7.3.0

//flag for source1 is WPI{Typos_are_GrEaT!}
int getpw(void){
        int res = 0;
        char pw[100];

        fgets(pw, 0x100, stdin);
        *strchrnul(pw, '\n') = 0;
        if(!strcmp(pw, getenv("SOURCE1_PW"))) res = 1;
        return res;
}

char *lesscmd[] = {"less", "source.c", 0};
int main(void){
        setenv("LESSSECURE", "1", 1);
        printf("Enter the password to get access to https://www.imdb.com/title/tt0945513/\n");
        if(!getpw()){
                printf("Pasword auth failed\nexiting\n");
                return 1;
        }

        execvp(lesscmd[0], lesscmd);
        return 0;
}

fgets(pw, 0x100, stdin);に不自然なtypoがありますね.

WPI{Typos_are_GrEaT!}

strings [Reversing, 50pts, 398solves]

A handy tool for your RE efforts!

アプローチ:strings

> file strings
strings: ELF 64-bit LSB shared object x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, BuildID[sha1]=4e539e560b4d7729f7926e1b594dc623ce4c8e0d, not stripped
> strings strings | grep WPI
WPI{
warbleglarblesomejunkWPI{What_do_you_mean_I_SEE_AHH_SKI}0x13376969

WPI{What_do_you_mean_I_SEE_AHH_SKI}

WebInspect [Web, 25pts, 465solves]

Something is lurking at https://www.wpictf.xyz

アプローチ:Chromeデベロッパーツール

リンク先でChromeデベロッパーツールを開きます.

f:id:satto1237:20190415144555p:plain

WPI{Inspect0r_Gadget}

suckmore-shell [Linux, 100pts, 210solves]

Here at Suckmore Software we are committed to delivering a truly unparalleled user experience. Help us out by testing our latest project.
- ssh ctf@107.21.60.114
- pass: i'm a real hacker now

Brought to you by acurless and SuckMore Software, a division of WPI Digital Holdings Ltd.

アプローチ:unalias

ssh するとsuckmore shellに繋がります.

> ssh ctf@107.21.60.114
ctf@107.21.60.114's password:
SuckMORE shell v1.0.1. Note: for POSIX support update to v1.1.0
suckmore>env
HOSTNAME=7eaed2c0fee9
PWD=/
HOME=/home/ctf
FBR=f
DISTTAG=fcontainer
FGC=f
TERM=xterm
SHLVL=2
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
PS1=suckmore>
_=/usr/bin/env

いくつかのコマンドを実行すると挙動がおかしいことに気が付きます(lsしてるのにsleephelpを見ろとか言われているので).

suckmore>ls
suckmore>ls -a
sleep: invalid option -- 'a'
Try 'sleep --help' for more information.
suckmore>pwd
Linux
suckmore>uname
Linux

aliasを確認します.

suckmore>alias
alias bash='sh'
alias cat='sleep 1 && vim'
alias cd='cal'
alias cp='grep'
alias dnf=''
alias find='w'
alias less='echo "We are suckMORE, not suckless"'
alias ls='sleep 1'
alias more='echo "SuckMORE shell, v1.0.1, (c) SuckMore Software, a division of WPI Digital Holdings Ltd."'
alias nano='touch'
alias pwd='uname'
alias rm='mv /u/'
alias sh='echo "Why would you ever want to leave suckmore shell?"'
alias sl='ls'
alias vi='touch'
alias vim='touch'
alias which='echo "Not Found"'

unaliasして元に戻します.

suckmore>unalias pwd
suckmore>unalias cd
suckmore>unalias ls

$HOMEに移動してflagを探します.

suckmore>pwd
/
suckmore>cd $HOME
suckmore>pwd
/home/ctf
suckmore>ls
bash: /usr/bin/ls: Permission denied

lsが使えないらしいのでgrepで探します.

suckmore>grep -r "WPI{" ./
./flag:WPI{bash_sucks0194342}

WPI{bash_sucks0194342}

zoomercrypt [Cryptography, 50pts, 91solves]

My daughter is using a coded language to hide her activities from us!!!! Please, help us find out what she is hiding!

f:id:satto1237:20190415150158p:plain

アプローチ:換字式暗号 + エスパー

絵文字が換字式暗号に見えるのでdecodeします.

以下のスクリプトで絵文字をASCIIに置き換えます.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

if __name__ == '__main__':

    emoji_cipher = '😃😁😕😗😈😗😇😋😄😗😆😓😄😓😂😈😎😃😃😁😓😆😇'
    emoji_translated = {}
    ascii_cipher = ''
    x = 0

    for emoji in emoji_cipher:
        if emoji not in emoji_translated:
            emoji_translated[emoji] = chr(65 + x)
            x += 1

    for emoji in emoji_cipher:
        ascii_cipher += emoji_translated[emoji]

    print(ascii_cipher)
> python solve.py
ABCDEDFGHDIJHJKELAABJIF

換字式暗号のソルバを使うためにスペースを挿入してあげます.

ABC DE DF GHD IJHJKE LAABJIF

ここまで来たらquipqiupで解けます.

quipqiup.com

OMG IT IS WPI REPENT BOOMERS

あとはフラグの形式に直してあげます.

WPI{REPENT_ZOOMERS}

ZOOMERスラングっぽいのでquipqiupでは出力されないっぽい

www.urbandictionary.com

jocipher [Cryptography, 100pts, 190solves]

Decrypt PIY{zsxh-sqrvufwh-nfgl} to get the flag!

アプローチ:uncompyle

バイトコンパイルされたPythonファイルが渡されます.

> file jocipher.pyc
jocipher.pyc: python 2.7 byte-compiled

Pythonのバイトコンパイルは簡単に復元できるのでuncompyleを使って元に戻します(pycにソース保護は期待できない)

pypi.org

> uncompyle6 jocipher.pyc
# uncompyle6 version 3.2.6
# Python bytecode 2.7 (62211)
# Decompiled from: Python 2.7.15 |Anaconda, Inc.| (default, May  1 2018, 18:37:05)
# [GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)]
# Embedded file name: ./jocipher.py
# Compiled at: 2019-03-02 02:41:21
import argparse, re
num = ''
first = ''
second = ''
third = ''

def setup():
    global first
    global num
    global second
    global third
    num += '1'
    num += '2'
    num += '3'
    num += '4'
    num += '5'
    num += '6'
    num += '7'
    num += '8'
    num += '9'
    num += '0'
    first += 'q'
    first += 'w'
    first += 'e'
    first += 'r'
    first += 't'
    first += 'y'
    first += 'u'
    first += 'i'
    first += 'o'
    first += 'p'
    second += 'a'
    second += 's'
    second += 'd'
    second += 'f'
    second += 'g'
    second += 'h'
    second += 'j'
    second += 'k'
    second += 'l'
    third += 'z'
    third += 'x'
    third += 'c'
    third += 'v'
    third += 'b'
    third += 'n'
    third += 'm'


def encode(string, shift):
    result = ''
    for i in range(len(string)):
        char = string.lower()[i]
        if char in num:
            new_char = num[(num.index(char) + shift) % len(num)]
            result += new_char
        elif char in first:
            new_char = first[(first.index(char) + shift) % len(first)]
            if string[i].isupper():
                result += new_char.upper()
            else:
                result += new_char
        elif char in second:
            new_char = second[(second.index(char) + shift) % len(second)]
            if string[i].isupper():
                result += new_char.upper()
            else:
                result += new_char
        elif char in third:
            new_char = third[(third.index(char) + shift) % len(third)]
            if string[i].isupper():
                result += new_char.upper()
            else:
                result += new_char
        else:
            result += char

    print result
    return 0


def decode(string, shift):
    result = ''
    shift = -1 * shift
    for i in range(len(string)):
        char = string.lower()[i]
        if char in num:
            new_char = num[(num.index(char) + shift) % len(num)]
            result += new_char
        elif char in first:
            new_char = first[(first.index(char) + shift) % len(first)]
            if string[i].isupper():
                result += new_char.upper()
            else:
                result += new_char
        elif char in second:
            new_char = second[(second.index(char) + shift) % len(second)]
            if string[i].isupper():
                result += new_char.upper()
            else:
                result += new_char
        elif char in third:
            new_char = third[(third.index(char) + shift) % len(third)]
            if string[i].isupper():
                result += new_char.upper()
            else:
                result += new_char
        else:
            result += char

    print result
    return 0


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--string', '-s', type=str, required=True, help='the string to encode or decode')
    parser.add_argument('--shift', '-t', type=int, required=True, help='the shift value to use')
    parser.add_argument('--encode', '-e', required=False, action='store_true', help='encode the string')
    parser.add_argument('--decode', '-d', required=False, action='store_true', help='decode the string')
    args = parser.parse_args()
    setup()
    p = re.compile('[a-zA-Z0-9\\-{}]')
    if p.match(args.string) is not None:
        if args.encode:
            ret = encode(args.string, args.shift)
        else:
            if args.decode:
                ret = decode(args.string, args.shift)
        if ret is not 0:
            print 'Sorry, this cipher only uses the [a-zA-Z0-9\\-{}]'
    else:
        print 'Sorry, this cipher only uses the [a-zA-Z0-9\\-{}]'
    return


if __name__ == '__main__':
    main()

なんとなくやってることは分かりました.
ただ,encoder, decoderを完全に理解するよりもシフトを総当たりした方が速く解けそうなので今回は総当たりします.

> for x in `seq 10`; do echo "$x"; python uncompyle_jocipher.py -s PIY{zsxh-sqrvufwh-nfgl} -t $x -d; done
1
OUT{mazg-apecydqg-bdfk}
2
IYR{nlmf-lowxtspf-vsdj}
3
UTE{bknd-kiqzraod-cash}
4
YRW{vjbs-jupmelis-xlag}
5
TEQ{chva-hyonwkua-zklf}
6
RWP{xgcl-gtibqjyl-mjkd}
7
EQO{zfxk-fruvphtk-nhjs}
8
WPI{mdzj-deycogrj-bgha}
9
QOU{nsmh-swtxifeh-vfgl}
10
PIY{bang-aqrzudwg-cdfk}

シフトを100まで増やしてWPIgrepします.

> for x in `seq 100`; do echo "$x"; python uncompyle_jocipher.py -s PIY{zsxh-sqrvufwh-nfgl} -t $x -d; done | grep WPI
WPI{mdzj-deycogrj-bgha}
WPI{vsbh-seymofrh-xfgl}
WPI{zaxg-aeyvodrg-ndfk}
WPI{blnf-leyzosrf-csdj}
WPI{xkcd-keyboard-mash}
WPI{njms-jeyxolrs-vlag}
WPI{chva-heynokra-zklf}
WPI{mgzl-geycojrl-bjkd}
WPI{vfbk-feymohrk-xhjs}
WPI{zdxj-deyvogrj-ngha}

さらにここから目grepflag感のある文字列を探します.

WPI{xkcd-keyboard-mash}

フラグを見てから元ネタを知りました.

xkcd.com

bogged [Cryptography, 150pts, 23solves]

Two strange men called me last night. They call themselves the Bogdanoff twins. I don't know much about cryptocurrency can you help them with their scheme?

nc bogged.wpictf.xyz 31337 (or 31338 or 31339)

アプローチ:Length Extension Attack

ncするとcryptowojak123の通貨をnot_b0gdan0ffに送金しろと言われます.

> nc bogged.wpictf.xyz 31337

BOGDANOFF:

Bonjour...
We have access to the Binance backdoor, and got you into a compromised teller station.
We need you to steal tethered cryptocurrency from people's wallets.
We were halted by an unfortunate countermeasure in the teller system, but we have an account ready to recieve the stolen crypto.

Steal the currency from cryptowojak123. Transfer it to not_b0gdan0ff.

Transfer everything... then we will kill him, and find another.

Do not fail us.









Welcome to the Binance Teller Terminal!
Please remember to use admin-issued auth tokens with each account transfer!

Either enter a command or one of the following keywords:

accounts: List of accounts currently on the system.
history: A history of prior terminal commands.
help: A reminder on how to use this terminal.

Command:
>>>

とりあえずhelpコマンドで概要を把握します.

Command:
>>>help

You may either withdraw funds from an account or deposit funds to an account.
Withdraw with the following command:
withdraw ACCOUNT_NAME
Deposit with the following command:
deposit ACCOUNT_NAME
Commands may be chained, as follows:
withdraw ACCOUNT_NAME;deposit ACCOUNT_NAME;...

An authorization token unique to the command contents must exist for the transaction to succeed!
(Sorry, but we have to protect from malicious employees.)
Contact admin@dontactuallyemailthis.net to get auth tokens for different transfer commands!

helpを読む限り,withdraw cryptowojak123;deposit not_b0gdan0ffを実行すればフラグが取れそうです.

Command:
>>>withdraw cryptowojak123;deposit not_b0gdan0ff
Auth token:
>>>a

Error: Auth token does not match provided command..

Auth tokenが必要みたいです(helpにも書かれているのでそれはそう).
ここで,問題に添付されていたleaked_source.pyを確認してみます.

import hashlib

secret = ""

def generate_command_token(command, secret):
    hashed = hashlib.sha1(secret+command).hexdigest() 
    return hashed

def validate_input(command, token_in):
    token = hash_command(command, secret)

    if token == token_in:
        return True
    else:
        return False

while(True):
    print("Command:")
    command = raw_input(">>>")
    print('Auth token:')
    token = raw_input(">>>")
    print
    if validate_input(command, token) == False:
        print("Error: Auth token does not match provided command..")
    else:
        execute_command(command)
    print 

hash(salt || command)Auth token になっていることが分かります.
つまり,withdraw cryptowojak123;deposit not_b0gdan0ffを実行するには hash(salt || 'withdraw cryptowojak123;deposit not_b0gdan0ff')が必要になります.
しかし,saltsecretになっているため,Auth tokenは簡単には求められません.

このままではまだちょっと情報が足りないのでhistoryコマンドの結果を確認します.

Command:
>>>history

///// TRANSACTION HISTORY //////////////////////////

Command:
>>>withdraw john.doe
Auth token:
>>>b4c967e157fad98060ebbf24135bfdb5a73f14dc
Action successful!

Command:
>>>withdraw john.doe;deposit xXwaltonchaingangXx
Auth token:
>>>455705a6756fb014a4cba2aa0652779008e36878
Action successful!

Command:
>>>withdraw cryptowojak123;deposit xXwaltonchaingangXx
Auth token:
>>>e429ffbfe7cabd62bda3589576d8717aaf3f663f
Action successful!

Command:
>>>withdraw john.doe
Auth token:
>>>b4c967e157fad98060ebbf24135bfdb5a73f14dc
Action successful!

////////////////////////////////////////////////////

コマンドの履歴だけではなく,Auth tokenまで見れますね.

ここで怪しい点をまとめると以下のようになります.

  • チェインルール
  • Auth tokenの生成方法
  • 過去のAuth tokenが閲覧可能

したがって,Length Extension Attackができることが分かります.

Length Extension Attackとはhash(salt || message1)message1が既知のとき,hash(salt || message1 || message2)が求められる攻撃です.

具体的には

  • message1: withdraw john.doe
  • hash(salt || message1): b4c967e157fad98060ebbf24135bfdb5a73f14dc
  • message2: ;withdraw cryptowojak123;deposit not_b0gdan0ff
  • hash(salt || message1 || message2): 求めたいAuth token

のようになります.

実際にLength Extension Attackを行うツールとしてはHashPumpを利用します.

github.com

以下ソルバです.
HashPumpを利用する際(Length Extension Attackを行う際)にはsaltの文字列長が必要になるのでそこは総当たりしてます.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

from socket import *
import subprocess
import binascii

def encodeHex(s):
    enc = ''
    xcode = ''
    for i in range(len(s)):
        if s[i] == '\\' and len(xcode) == 0:
            xcode += s[i]
        elif s[i] == 'x' and len(xcode) == 1:
            xcode += s[i]
        elif len(xcode) == 2:
            xcode += s[i]
        elif len(xcode) == 3:
            xcode += s[i]
            enc += xcode[2:]
            xcode = ''
        else:
            enc += '%02x' % ord(s[i])
    return enc

def LEA(cmd):
    proc = subprocess.run(cmd,stdout = subprocess.PIPE, stderr = subprocess.PIPE)
    ret = proc.stdout.decode('utf-8').split('\n')
    token = ret[0].encode('utf-8')
    init = ret[1][:17].encode('utf-8')
    lines = ret[1][17:].split(';')
    encHex = encodeHex(lines[0])
    pad = binascii.unhexlify(encHex)
    append = (';' + lines[1] + ';' + lines[2]).encode('utf-8')
    data = init + pad + append
    print(data)

    return (data,token)

def main():
    cmd_format = ['hashpump', '-s', 'b4c967e157fad98060ebbf24135bfdb5a73f14dc', '-d', 'withdraw john.doe', '-k', 'n', '-a', ';withdraw cryptowojak123;deposit not_b0gdan0ff']
    s = socket(AF_INET, SOCK_STREAM)
    s.connect(('bogged.wpictf.xyz', 31337))

    # recv 'description'
    for _ in range(2):
        temp_rec = s.recv(1024).decode('utf-8')

    for n in range(1, 33):
        print('SALT Length: {}'.format(n))
        cmd_format[6] = str(n)
        LEA_data, token = LEA(cmd_format)
        s.send(LEA_data + b'\n')
        # recv 'Auth token'
        temp_rec = s.recv(1024).decode('utf-8')
        print(temp_rec)

        s.send(token + b'\n')
        print(token)

        # recv '>>>'
        temp_rec = s.recv(1024).decode('utf-8')
        print(temp_rec)

        # recv 'result'
        temp_rec = s.recv(1024).decode('utf-8')
        print(temp_rec)

        if 'Error' not in temp_rec:
            break

if __name__ == '__main__':
    main()
> python solve.py
[snip]

Command:
>>>
SALT Length: 16
b'withdraw john.doe\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x08;withdraw cryptowojak123;deposit not_b0gdan0ff'
Auth token:
b'050a162f6ee310d345821b402f436b19677495dc'

>>>

A subcommand was unreadable...
Action successful!
Action successful!


BOGDANOFF:

The money is transferred. You have done... well.
Your service has demonstrated your loyalty. You have truly swallowed the bogpill.

You will be among the first to behold the enlightenment we will soon unleash.

...

Quoi?

You want more?

...

Somewhere in the cosmos, a secret calls out to us, lost in the wrinkles of time.

We shall relay this secret to you.


Au revoir.







WPI{duMp_33t_aNd_g@rn33sh_H1$_wAg3$}

WPI{duMp_33t_aNd_g@rn33sh_H1$_wAg3$}

まとめ

  • 簡単な問題しか解けなくて悲しくなった
  • Web, Cryptoがあと1問ずつ解けそうだったけど解けなかった(Write-up読んでべんきょうする)
  • PlaidCTFが難しかったのでこっちに参加した

UTCTF2019 Write-up (供養)

はじめに

2019/03/09 ~ 2019/03/11 に開催されたUTCTFに個人で少しだけ参加しました.
時間があまりとれなかったのでwarm-upとCrypto問中心に取り組みました.

成績

4問解いて187位 (1問以上解いた581チーム中) でした.

[basics] forensics (Forensics, 100 pts, 437 solves)

My friend said they hid a flag in this picture, but it's broken!
[sectret.jpg]

アプローチ:fileコマンド

とりあえずopenしようとします.

> open secret.jpg

f:id:satto1237:20190311124618p:plain

openできなかったのでfileでフォーマットを確認します.

> file secret.jpg
secret.jpg: ASCII text

そもそも.jpgではなかったようです.

stringsで中身を確認します.

> strings secret.jpg
utflag{d0nt_tru5t_f1l3_3xt3ns10n5}

utflag{d0nt_tru5t_f1l3_3xt3ns10n5}

[basics] re (Reverse Engineering, 100 pts, 462 solves)

I know there's a string in this binary somewhere.... Now where did I leave it?
[calculator]

アプローチ:strings

一応

> file calculator
calculator: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32, BuildID[sha1]=12d2c94aa02e2ebaca1b262031791914ebae7936, not stripped

問題文の通りにやります.

> strings calculator | grep utflag
utflag{str1ng5_15_4_h4ndy_t00l}

utflag{str1ng5_15_4_h4ndy_t00l}

[basics] crypto (Cryptography, 200 pts, 426 solves)

Can you make sense of this file?
binary.txt

アプローチ:base64 + rot15 + 換字式暗号

添付されていたbinary.txtは以下のようになっています.

01010101 01101000 00101101 01101111 01101000 00101100 00100000 01101100 01101111 01101111 01101011 01110011 00100000 01101100 01101001 01101011 01100101 00100000 01110111 01100101 00100000 01101000 01100001 01110110 01100101 00100000 01100001 01101110 01101111 01110100 01101000 01100101 01110010 00100000 01100010 01101100 01101111 01100011 01101011 00100000 01101111 01100110 00100000 01110100 01100101 01111000 01110100 00101100 00100000 01110111 01101001 01110100 01101000 00100000 01110011 01101111 01101101 01100101 00100000 01110011 01101111 01110010 01110100 00100000 01101111 01100110 00100000 01110011 01110000 01100101 01100011 01101001 01100001 01101100 00100000 01100101 01101110 01100011 01101111 01100100 01101001 01101110 01100111 00101110 00100000 01000011 01100001 01101110 00100000 01111001 01101111 01110101 00100000 01100110 01101001 01100111 01110101 01110010 01100101 00100000 01101111 01110101 01110100 00100000 01110111 01101000 01100001 01110100 00100000 01110100 01101000 01101001 01110011 00100000 01100101 01101110 01100011 01101111 01100100 01101001 01101110 01100111 00100000 01101001 01110011 00111111 00100000 00101000 01101000 01101001 01101110 01110100 00111010 00100000 01101001 01100110 00100000 01111001 01101111 01110101 00100000 01101100 01101111 01101111 01101011 00100000 01100011 01100001 01110010 01100101 01100110 01110101 01101100 01101100 01111001 00101100 00100000 01111001 01101111 01110101 00100111 01101100 01101100 00100000 01101110 01101111 01110100 01101001 01100011 01100101 00100000 01110100 01101000 01100001 01110100 00100000 01110100 01101000 01100101 01110010 01100101 00100000 01101111 01101110 01101100 01111001 00100000 01100011 01101000 01100001 01110010 01100001 01100011 01110100 01100101 01110010 01110011 00100000 01110000 01110010 01100101 01110011 01100101 01101110 01110100 00100000 01100001 01110010 01100101 00100000 01000001 00101101 01011010 00101100 00100000 01100001 00101101 01111010 00101100 00100000 00110000 00101101 00111001 00101100 00100000 01100001 01101110 01100100 00100000 01110011 01101111 01101101 01100101 01110100 01101001 01101101 01100101 01110011 00100000 00101111 00100000 01100001 01101110 01100100 00100000 00101011 00101110 00100000 01010011 01100101 01100101 00100000 01101001 01100110 00100000 01111001 01101111 01110101 00100000 01100011 01100001 01101110 00100000 01100110 01101001 01101110 01100100 00100000 01100001 01101110 00100000 01100101 01101110 01100011 01101111 01100100 01101001 01101110 01100111 00100000 01110100 01101000 01100001 01110100 00100000 01101100 01101111 01101111 01101011 01110011 00100000 01101100 01101001 01101011 01100101 00100000 01110100 01101000 01101001 01110011 00100000 01101111 01101110 01100101 00101110 00101001 00001010 01010100 01101101 01010110 00110011 01001001 01000111 01001110 01101111 01011001 01010111 01111000 01110011 01011010 01010111 00110101 01101110 01011010 01010011 01000101 01100111 01010001 00110010 01000110 01110101 01001001 01001000 01101100 01110110 01100100 01010011 01000010 01101101 01100001 01010111 01100100 00110001 01100011 01101101 01010101 01100111 01100010 00110011 01010110 00110000 01001001 01001000 01100100 01101111 01011001 01011000 01010001 01101110 01100011 01111001 01000010 01101110 01100010 00110010 01101100 01110101 01011010 01111001 01000010 01110110 01100010 01101001 01000010 01101111 01011010 01011000 01001010 01101100 01010000 01111001 01000010 01001010 01100100 01000011 01000010 01110011 01100010 00110010 00111001 01110010 01100011 01111001 01000010 01110011 01100001 01010111 01110100 01101100 01001001 01001000 01010010 01101111 01011010 01010011 01000010 01110011 01011010 01011000 01010010 00110000 01011010 01011000 01001010 01111010 01001001 01000111 01000110 01111001 01011010 01010011 01000010 01111010 01100001 01000111 01101100 01101101 01100100 01000111 01010110 01101011 01001001 01000111 01001010 00110101 01001001 01001000 01001110 01110110 01100010 01010111 01010101 01100111 01011001 00110010 00111001 01110101 01100011 00110011 01010010 01101000 01100010 01101110 01010001 01110101 01001001 01000011 01101000 01101111 01100001 01010111 00110101 00110000 01001111 01101001 01000010 00110101 01100010 00110011 01010101 01100111 01100010 01010111 01101100 01101110 01100001 01001000 01010001 01100111 01100100 00110010 01000110 01110101 01100100 01000011 01000010 00110000 01100010 01111001 01000010 01111010 01100100 01000111 01000110 01111001 01100100 01000011 01000010 01110011 01100010 00110010 00111001 01110010 01100001 01010111 00110101 01101110 01001001 01001000 01010110 01110111 01001001 01000110 01001010 01110110 01100010 01010111 01000110 01110101 01001001 01001000 01000010 01101100 01100010 00110011 01000010 01110011 01011010 01010011 01101011 01110101 01000011 01101101 01110100 00110010 01011001 01101110 01001110 01111000 01100011 01101101 01010001 01110011 01001001 01000111 01101100 00110101 01011010 01010011 01100100 01101001 01100010 01111001 01000010 01110010 01100100 01101110 01100100 00110101 01011001 00110010 01010001 01100111 01011010 01001000 01001010 01110110 01011001 01101101 00111000 01101000 01001001 01000110 01101000 00110101 01011010 01111001 01000010 01110111 01100101 01010111 01001001 01100111 01011010 01001000 01001010 01110110 01001001 01001000 01000010 01111010 01100101 01000111 01110100 00110010 01001001 01000011 01101000 01110010 01100101 01000111 00110100 01100111 01100100 00110010 01110100 01110000 01100010 01000111 00111000 01100111 01011010 01001000 01001010 01110110 01001001 01001000 01001010 01110010 01011001 01101101 00110101 01110110 01011001 00110010 01010001 01110101 01001100 01101001 00110100 01110000 01001001 01001000 01110000 01110010 01011001 01101101 01010001 00110110 01001001 01000111 01110011 01100111 01011001 00110010 01010110 01110011 01011001 00110010 01010010 01111010 01011010 01000111 01010110 01101011 01100011 00110011 01101100 00110100 01001001 01000111 00110001 01111010 01100101 01101110 01001010 01110110 01011001 01101001 00110100 01100111 01010101 00110011 01100111 01100111 01011010 01001000 01001010 01110110 01001001 01001000 01000010 00110101 01100100 01101110 01011010 00110101 01011010 00110011 01001110 00110100 01100011 01010011 01000010 01101011 01100010 00110010 01101000 01101011 01001100 01000011 01000010 01010100 01001010 00110010 01011010 01110110 01001001 01000111 01010010 01110010 01100100 01010111 00111001 00110100 01001001 01001000 01100100 01110000 01001001 01001000 01100100 01110110 01011001 00110010 01001110 01110010 01100011 01010111 00111000 01100111 01100001 00110011 01101000 01110101 01001001 01000111 01001010 01110110 01100101 01101110 01011010 01110010 01100010 01010111 00111001 01110101 01001001 01000111 00111001 01101101 01100010 00110010 01001010 01110000 01001001 01000111 01110100 00110010 01100101 01101110 01001010 01110010 01100010 01000111 00111001 01101011 01100011 00110010 00110000 01100111 01100010 01011000 01001010 01110010 01011001 01101101 01110100 01110100 01011010 01000111 00111001 01101001 01001001 01000111 01100100 01111010 01011010 01001000 01001001 01100111 01100001 01111001 01000010 01110100 01100101 01010111 01001010 01101001 01100010 00110010 01001110 00110110 01100101 01011000 01101000 01110101 01100010 00110011 01101000 01110100 01100010 01111001 01000010 01101011 01100101 01010011 01000010 01110010 01001001 01000111 00110101 01111010 01100011 01001000 01000010 01110110 01011001 01101101 00111001 00110100 01011010 01000011 01000010 01110100 01100011 01101101 01110100 01101001 01100001 00110010 00110001 01101011 01100010 00110010 01001001 01100111 01001100 01010011 01000010 00110001 01100101 01001000 01101100 01101110 01100101 01000011 01000010 01110010 01011001 01111001 01000010 01110010 01001001 01000111 01001110 01101100 01100010 01000111 01001110 01101011 01100011 00110010 01010010 01101100 01011010 01001000 01001110 00110101 01100101 01000011 01000010 01110100 01100011 00110011 01110000 01111001 01100010 00110010 01001001 01110101 01001001 01000101 00110001 01110010 01100101 01000011 01000010 01110000 01100101 01010111 01010101 01100111 01100011 01001000 01001110 00110100 01100010 01101001 01000010 01101011 01100011 01101101 00111000 01100111 01100011 01001000 01001110 00110100 01100001 00110011 01011001 01100111 01100011 01001000 01011010 01110010 01100011 01010100 00111000 01100111 01100011 01101110 01001110 00110100 01011010 01000100 01101111 01100111 01010010 00110010 00111000 01100111 01100100 01011000 01101000 00110101 01011010 01111001 01000010 01101011 01100011 01101101 01110100 01101011 01001001 01000111 01010010 01111001 01100010 01111001 01000010 01110111 01100100 01101101 01110100 01111000 01001001 01001000 01001110 01101010 01001001 01001000 01000110 00110101 01100011 00110011 01101000 01111000 01001001 01000111 01010010 00110101 01001001 01000111 01111000 01110110 01001001 01001000 01101100 01110111 01001001 01000111 01010010 01111001 01100010 01111001 01000010 01110111 01100101 01010111 01001010 00110011 01100001 00110010 01010001 01100111 01011010 01010111 01010010 01110111 01100100 01101101 01110100 01111000 01100101 01111001 00110100 01110101 01001100 01101110 00110000 01100111 01001100 01010011 01000010 01101110 01100011 01101110 01001110 01110100 01100011 01101001 01000010 00110011 01100010 00110010 01110100 00110100 01011001 01111001 01000010 01101011 01100011 01101101 01110100 01101011 01001001 01001000 01001110 01110111 01001001 01000111 01101100 00110101 01011010 01010011 01000010 01101010 01100010 00110010 00111000 01100111 01011010 01001000 01001010 01110010 01011010 01000011 01000010 00110110 01100001 00110010 01010010 01101011 01100010 00110010 01001010 00110100 01001100 01000011 01000010 01110000 01100101 01010111 01010101 01100111 01100100 01011000 01101000 00110101 01011010 01111001 01000010 01101110 01100011 01101101 01110100 01101011 01001001 01000111 01010010 01111001 01100010 01111001 01000010 01110100 01100101 01010111 01001010 01101001 01100010 00110010 01001110 00110110 01100101 01011000 01101000 01110101 01100010 00110011 01101000 01110100 01100010 00110010 01001101 01100111 01100011 01001000 01101100 01101001 01001001 01000111 01010101 01110011 01001001 01000111 01010001 01110011 01001001 01001000 01000001 01110011 01001001 01001000 01011001 01100111 01100001 01111001 01110111 01100111 01100001 00110011 01101000 01110101 01001001 01001000 01000101 01100111 01100001 00110010 01001010 01110110 01001100 01101001 01000010 01001010 01100101 01010111 01010101 01100111 01100010 01010111 01110100 00110100 01001001 01001000 01110000 01101001 01100101 01010111 01111000 01110010 01100010 01001000 01011010 01110000 01001001 01000111 01100100 00110101 01011001 01101110 01010101 01100111 01100101 01010111 01010110 01101011 01001001 01000111 01010010 01111001 01100010 01111001 01000010 01101001 01100010 00110011 01100100 01110010 01100011 00110011 01101000 01111010 01100101 01001000 01000101 01100111 01100010 01011000 01001010 01110010 01011001 01101101 01110100 01110100 01011010 01000111 00111001 01101001 01011001 01111001 01000010 01110011 01100001 01010011 01000010 01101001 01100010 00110011 01110000 00110010 01100001 00110010 00110001 01111010 01100101 01001000 01000101 01100111 01011010 01001000 01001010 01110110 01100100 01111001 01000010 01110010 01100101 01000111 00110100 01100111 01100011 00110011 01101000 01110111 01100010 00110010 01001010 01101001 01100011 00110011 01101000 01111000 01001001 01000111 00110001 00110101 01100100 00110011 01100100 00110101 01100101 01000011 01000010 01101110 01100101 01010111 01001010 01110101 01011001 01111001 01000010 01111010 01100101 01000011 01000010 01101011 01100011 01101101 00111000 01100111 01010100 00110011 01101000 01111000 01100100 01101110 01001110 01101010 01100011 01101001 01000010 00110010 01100001 00110011 01101000 01111000 01011010 01010111 01110100 01111000 01100010 01111001 00110100 01100111 01010011 00110011 01101000 00110101 01011010 01001000 01001010 01110110 01011001 01101001 01000010 01111000 01011001 01101101 00111001 01110010 01011010 01000011 01000010 00110011 01100010 00110010 01010010 01111001 01100101 01010111 00110100 01100111 01100011 00110010 01001101 01100111 01011010 01001000 01101011 01100111 01011010 01010111 01001110 01110110 01001001 01001000 01000010 01101001 01100010 00110010 01000110 01101100 01100010 00110011 01101000 01110100 01100001 01010011 01000010 01110010 01100101 01000111 01110100 00110010 01100001 01010111 01001110 01111010 01011001 01111010 01101111 01100111 01011010 00110010 00111000 01100111 01100100 01011000 01101000 00110101 01011010 01111001 01000010 01101011 01100011 01101101 01110100 01101011 01001001 01000011 01100100 01110110 01001010 01111001 01000010 01101010 01100011 01101110 01101100 01101110 01011001 01111001 01000010 01101100 01100101 01101001 01000010 00110011 01100101 01010111 01001110 01101011 01001001 01001000 01101100 01110111 01011010 01000111 00111001 00110100 01001001 01001000 01001110 00110100 01001001 01000111 01010010 01111001 01100010 01111001 01000010 01110010 01100100 01101110 01110000 01111001 01100001 00110010 01111000 01110110 01011010 01000011 01110111 01100111 01011001 00110011 01101011 01100111 01011010 01001000 01001010 01110010 01011010 01000011 01100100 01101010 01001001 01001000 01110000 01101001 01100101 01010111 01111000 01110010 01100010 01001000 01011010 01110000 01001001 01000111 01010010 01111001 01100010 01111001 01000010 00110011 01100101 01010111 01001110 01101011 01001001 01000111 00110001 00110101 01100100 00110011 01100100 00110101 01100101 01000011 01000010 01110100 01100011 01101101 01110100 01101001 01100001 00110010 00110001 01101011 01100010 00110010 01001001 01100111 01100011 00110011 01100111 01100111 01011010 01001000 01001010 01110110 01001001 01000111 01010010 01110110 01100001 01000111 01010001 01110011 01001001 01001000 01000010 00110101 01100100 01101110 01011010 00110101 01011010 00110010 00111001 01110101 01001001 01000111 01111000 01110000 01001001 01000011 01100100 01101011 01001010 01111001 01110111 01100111 01100001 00110011 01101000 01110101 01001001 01000111 01001110 00110101 01001001 01001000 01101100 00110100 01001100 01101001 01000010 01011010 01100101 01000111 00110001 01110110 01001001 01000111 01101100 00110101 01011010 01010011 01000010 00110001 01100101 01001000 01101100 01101110 01001001 01000111 01110011 01100111 01100011 01000111 00111001 01101110 01001001 01000111 00110001 01111001 01100001 00110010 01001010 01110010 01100010 01010111 01010010 01110110 01011001 01101101 01001101 01110011 01001001 01000111 01101100 00110101 01011010 01010011 01000010 01110100 01100001 00110011 01100111 01100111 01100011 00110011 01101000 01110111 01100010 00110010 01001001 01100111 01011010 01001000 01001010 01110110 01001001 01000111 01001010 01110110 01011001 00110010 01010001 01100111 01100101 01011000 01000001 01100111 01011010 01001000 01001010 01110110 01001001 01000111 01100100 00110101 01011001 01101101 00110101 01101010 01001001 01000111 01111000 01110010 01011001 00110010 00111001 01110101 01001001 01001000 01101100 00110100 01001001 01000111 00110001 00110101 01100100 00110011 01100100 00110101 01100101 01000011 01000010 01101110 01100101 01010111 01001010 01110101 01011001 01111001 01000010 01101011 01100011 01101101 01110100 01101011 01001001 01000111 01001110 01111001 01100101 01010111 01100011 01100111 01011010 01011000 01101111 01100111 01100011 00110011 01100111 01100111 01011010 01001000 01001010 01110110 01001001 01000101 00111001 00110100 01100011 01011000 01011010 01111010 01011001 00110011 01001001 01100111 01100100 01101101 01110100 00110100 01100011 01010111 01010110 01110010 01100011 01010111 00111000 01110101 01000011 01101110 01001010 01101110 01100001 01000111 00110101 00110100 01100011 00110010 01010010 01101101 01100101 01011000 01001110 01101011 01100100 01000111 01100100 01101111 01100100 01010011 01000101 01100111 01100011 01010111 01100100 01101101 01001001 01000111 01101100 01111010 01011001 01010111 01110011 01100111 01011001 00110011 01010010 01101111 01100100 01001000 01010110 01110000 01100001 00110010 01010101 01100111 01011010 01000111 01101100 01110010 01001001 01001000 01110000 01110010 01100010 01101110 01010010 01101111 01100001 01000111 01110100 00110100 01001001 01001000 01001010 00110100 01100011 01010111 01111000 01101011 01011010 00110010 00110101 00110100 01100011 00110010 01111000 01110000 01100011 01010011 01000010 01111001 01100001 01011000 01001110 00110101 01100101 01010111 01110100 01101111 01100010 01101101 01110011 01110101 01001001 01000111 01101100 01110010 01100101 01000111 01110011 01100111 01100100 01001000 01010101 01100111 01100011 01111001 01000010 01101010 01100101 01011000 01001110 01110101 01001001 01000111 01001110 01101110 01100101 01000011 01000010 01111010 01100101 01011000 01101011 01100111 01100011 01010111 01100100 01101101 01100101 01000011 01000010 01110000 01100011 00110011 01101000 01101100 01001001 01000111 01110100 01101010 01011001 00110010 01100100 00110100 01011010 01001000 01010101 00110110 01001001 01000111 01011010 01101011 01011001 00110011 01101100 01111010 01100010 01101110 01110011 01111010 01100001 01001000 01001010 00110100 01100011 01010111 01111000 01101011 01001101 01010100 01000010 01101111 01011000 01111010 01000101 00110001 01011000 00110011 01001001 01110111 01001101 01001000 01101100 00111001 01001100 01101001 01000010 01111000 01011010 00110010 01011001 01100111 01100100 01101110 01010010 00110101 01100101 01010011 01000010 01101010 01100100 01000111 01101000 01101100 01001001 01000111 01010010 01110000 01100011 00110010 01010001 01100111 01100011 01111001 01000010 00110101 01011010 00110010 01010001 01100111 01011010 00110010 01001101 01100111 01100011 01101110 01101000 01111000 01100010 01000111 01010010 01101110 01100010 01101110 01101000 01111010 01100010 01000111 01101100 01111000 01001001 01001000 01010010 00110001 01001001 01001000 01000010 01101101 01100100 01010111 01010001 01100111 01100101 01101101 01011010 00110000 01100101 01010111 01010110 00110000 01100001 01000111 00110100 01100111 01011010 00110010 01001110 01101010 01001001 01000111 01010010 01110000 01100100 01001000 01010101 01100111 01100100 01010111 01100100 00110100 01011010 01000011 01000010 01101110 01011001 01111001 01000010 00110110 01100011 00110011 01010110 00110000 01100011 01101001 01000010 01101001 01100001 01000111 01100100 00110010 01100101 01010111 01110100 01101100 01100010 01101101 01110011 01110011 01001001 01001000 01001110 01101111 01011010 01010011 01000010 00110000 01011010 01000011 01000010 00110100 01100001 00110011 01001110 00110101 01100101 01011000 01000101 01100111 01100100 01001000 01010101 01100111 01100001 01000111 01100100 01101011 01001001 01001000 01010110 01101110 01001001 01001000 01110000 01111010 01011010 01010011 01000010 01111010 01011001 00110010 01010010 01110010 01100101 01000011 01000010 01111010 01100101 01011000 01101011 01110101 01001001 01000111 01101100 01101110 01100010 01000111 01110011 01100111 01100011 01010111 01100100 01101101 01001001 01000111 01110100 01101111 01100011 01000111 01100100 01111000 01100001 00110010 01010101 01100111 01011010 01000111 01101100 01110010 01001001 01001000 01001010 01110000 01100011 00110011 01101100 00110101 01100001 00110010 01101000 01110101 01100001 01111001 01000101 00111101

どう見てもASCIIなので変換スクリプトを書いてあげると以下のようになります.

Uh-oh, looks like we have another block of text, with some sort of special encoding. Can you figure out what this encoding is? (hint: if you look carefully, you'll notice that there only characters present are A-Z, a-z, 0-9, and sometimes / and +. See if you can find an encoding that looks like this one.)
TmV3IGNoYWxsZW5nZSEgQ2FuIHlvdSBmaWd1cmUgb3V0IHdoYXQncyBnb2luZyBvbiBoZXJlPyBJdCBsb29rcyBsaWtlIHRoZSBsZXR0ZXJzIGFyZSBzaGlmdGVkIGJ5IHNvbWUgY29uc3RhbnQuIChoaW50OiB5b3UgbWlnaHQgd2FudCB0byBzdGFydCBsb29raW5nIHVwIFJvbWFuIHBlb3BsZSkuCmt2YnNxcmQsIGl5ZSdibyBrdnd5Y2QgZHJvYm8hIFh5ZyBweWIgZHJvIHBzeGt2IChreG4gd2tpbG8gZHJvIHJrYm5vY2QuLi4pIHprYmQ6IGsgY2VsY2RzZGVkc3l4IG1zenJvYi4gU3ggZHJvIHB5dnZ5Z3N4cSBkb2hkLCBTJ2ZvIGRrdW94IHdpIHdvY2NrcW8ga3huIGJvenZrbW9uIG9mb2JpIGt2enJrbG9kc20gbXJrYmttZG9iIGdzZHIgayBteWJib2N6eXhub3htbyBkeSBrIG5zcHBvYm94ZCBtcmtia21kb2IgLSB1eHlneCBrYyBrIGNlbGNkc2RlZHN5eCBtc3pyb2IuIE1reCBpeWUgcHN4biBkcm8gcHN4a3YgcHZrcT8gcnN4ZDogR28gdXh5ZyBkcmtkIGRybyBwdmtxIHNjIHF5c3hxIGR5IGxvIHlwIGRybyBweWJ3a2QgZWRwdmtxey4uLn0gLSBncnNtciB3b2t4YyBkcmtkIHNwIGl5ZSBjb28gZHJrZCB6a2Rkb2J4LCBpeWUgdXh5ZyBncmtkIGRybyBteWJib2N6eXhub3htb2MgcHliIGUsIGQsIHAsIHYgaywga3huIHEga2JvLiBJeWUgbWt4IHpieWxrbHZpIGd5YnUgeWVkIGRybyBib3drc3hzeHEgbXJrYmttZG9iYyBsaSBib3p2a21zeHEgZHJvdyBreG4gc3hwb2Jic3hxIG15d3d5eCBneWJuYyBzeCBkcm8gT3hxdnNjciB2a3hxZWtxby4gS3h5ZHJvYiBxYm9rZCB3b2RyeW4gc2MgZHkgZWNvIHBib2Flb3htaSBreGt2aWNzYzogZ28gdXh5ZyBkcmtkICdvJyBjcnlnYyBleiB3eWNkIHlwZG94IHN4IGRybyBrdnpya2xvZCwgY3kgZHJrZCdjIHpieWxrbHZpIGRybyB3eWNkIG15d3d5eCBtcmtia21kb2Igc3ggZHJvIGRvaGQsIHB5dnZ5Z29uIGxpICdkJywga3huIGN5IHl4LiBZeG1vIGl5ZSB1eHlnIGsgcG9nIG1ya2JrbWRvYmMsIGl5ZSBta3ggc3hwb2IgZHJvIGJvY2QgeXAgZHJvIGd5Ym5jIGxrY29uIHl4IG15d3d5eCBneWJuYyBkcmtkIGNyeWcgZXogc3ggZHJvIE94cXZzY3Igdmt4cWVrcW8uCnJnaG54c2RmeXNkdGdodSEgcWdmIGlzYWsgY3RodHVpa2UgZGlrIHprbnRoaGt4IHJ4cWxkZ254c2xpcSByaXN5eWtobmsuIGlreGsgdHUgcyBjeXNuIGNneCBzeXkgcWdmeCBpc3hlIGtjY2d4ZHU6IGZkY3lzbnszaHJ4cWxkMTBoXzE1X3IwMHl9LiBxZ2YgdnR5eSBjdGhlIGRpc2QgcyB5Z2QgZ2MgcnhxbGRnbnhzbGlxIHR1IHBmdWQgemZ0eWV0aG4gZ2NjIGRpdHUgdWd4ZCBnYyB6c3V0ciBiaGd2eWtlbmssIHNoZSB0ZCB4a3N5eXEgdHUgaGdkIHVnIHpzZSBzY2RreCBzeXkuIGlnbGsgcWdmIGtocGdxa2UgZGlrIHJpc3l5a2huayE=

どう見てもbase64なので変換スクリプトを書いてあげると以下のようになります.

New challenge! Can you figure out what's going on here? It looks like the letters are shifted by some constant. (hint: you might want to start looking up Roman people).
kvbsqrd, iye'bo kvwycd drobo! Xyg pyb dro psxkv (kxn wkilo dro rkbnocd...) zkbd: k celcdsdedsyx mszrob. Sx dro pyvvygsxq dohd, S'fo dkuox wi wocckqo kxn bozvkmon ofobi kvzrklodsm mrkbkmdob gsdr k mybboczyxnoxmo dy k nsppoboxd mrkbkmdob - uxygx kc k celcdsdedsyx mszrob. Mkx iye psxn dro psxkv pvkq? rsxd: Go uxyg drkd dro pvkq sc qysxq dy lo yp dro pybwkd edpvkq{...} - grsmr wokxc drkd sp iye coo drkd zkddobx, iye uxyg grkd dro mybboczyxnoxmoc pyb e, d, p, v k, kxn q kbo. Iye mkx zbylklvi gybu yed dro bowksxsxq mrkbkmdobc li bozvkmsxq drow kxn sxpobbsxq mywwyx gybnc sx dro Oxqvscr vkxqekqo. Kxydrob qbokd wodryn sc dy eco pboaeoxmi kxkvicsc: go uxyg drkd 'o' crygc ez wycd ypdox sx dro kvzrklod, cy drkd'c zbylklvi dro wycd mywwyx mrkbkmdob sx dro dohd, pyvvygon li 'd', kxn cy yx. Yxmo iye uxyg k pog mrkbkmdobc, iye mkx sxpob dro bocd yp dro gybnc lkcon yx mywwyx gybnc drkd cryg ez sx dro Oxqvscr vkxqekqo.
rghnxsdfysdtghu! qgf isak cthtuike dik zknthhkx rxqldgnxsliq risyykhnk. ikxk tu s cysn cgx syy qgfx isxe kccgxdu: fdcysn{3hrxqld10h_15_r00y}. qgf vtyy cthe disd s ygd gc rxqldgnxsliq tu pfud zftyethn gcc ditu ugxd gc zsutr bhgvykenk, she td xksyyq tu hgd ug zse scdkx syy. iglk qgf khpgqke dik risyykhnk!

rot系っぽいので総当たりします.

alright, you're almost there! Xow for the final (and maybe the hardest...) part: a substitution cipher. Sn the following text, S've taken my message and replaced every alphabetic character with a correspondence to a different character - known as a substitution cipher. Man you find the final flag? hint: Ge know that the flag is going to be of the format utflagq...s - which means that if you see that pattern, you know what the correspondences for u, t, f, l a, and g are. Iou can probably work out the remaining characters by replacing them and inferring common words in the Onglish language. Knother great method is to use frequency analysis: we know that 'e' shows up most often in the alphabet, so that's probably the most common character in the text, followed by 't', and so on. Ynce you know a few characters, you can infer the rest of the words based on common words that show up in the Onglish language.

hwxdnitvoitjwxk! gwv yiqa sjxjkyau tya padjxxan hngbtwdnibyg hyiooaxda. yana jk i soid swn ioo gwvn yinu asswntk: vtsoid{3xhngbt10x_15_h00o}. gwv ljoo sjxu tyit i owt ws hngbtwdnibyg jk fvkt pvjoujxd wss tyjk kwnt ws pikjh rxwloauda, ixu jt naioog jk xwt kw piu istan ioo. ywba gwv axfwgau tya hyiooaxda!

rot15でした.

どうやら次が最終パート(換字式暗号)みたいです.
問題文では文字の出現頻度を利用して換字を推定すると良いみたいなことが書かれていますが,手作業でやると少し時間がかかるのでquipqiupを使います.

quipqiup.com

congratulations! you have finished the beginner cryptography challenge. here is a flag for all your hard efforts: utflag{3ncrypt10n_15_c00l}. you will find that a lot of cryptography is just building off this sort of basic knowledge, and it really is not so bad after all. hope you enjoyed the challenge!

utflag{3ncrypt10n_15_c00l}

ソルバは以下のようになっています.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import base64

def phase1():
    with open('./binary.txt') as f:
        b = f.read()

    b_list = b.strip().split(' ')
    b_text = []
    for x in b_list:
        b_text.append(chr(int(x,2)))

    return ''.join(b_text)

def phase2(p1_result):
    enc64_text = p1_result.split('\n')[1]
    dec64_text = base64.b64decode(enc64_text)

    return dec64_text.decode('utf-8')

def phase3(p2_result):
    enc_text = p2_result.split('\n')[1]
    dec_text = []
    for x in enc_text:
        if 97 <= ord (x) and ord(x) <= 127:
            dec_text.append(chr((ord(x) + 15 - 96) % 26 + 97))
        else:
            dec_text.append(x)

    print(''.join(dec_text))

    enc_text2 = p2_result.split('\n')[2]
    dec_text2 = []

    for x in enc_text2:
        if 97 <= ord (x) and ord(x) <= 122:
            dec_text2.append(chr((ord(x) + 15 - 96) % 26 + 97))
        else:
            dec_text2.append(x)

    return ''.join(dec_text2)

def phase4(p3_result):
    dec_dict = {'a':'e', 'b':'p', 'd':'g', 'f':'j', 'g':'y', 'h':'c', 'i':'a', 'j':'i',
                'k':'s', 'l':'w', 'n':'r', 'o':'l', 'p':'b', 'q':'v', 'r':'k', 's':'f',
                't':'t','u':'d', 'v':'u', 'w':'o', 'x':'n', 'y':'h'}

    flag = []

    for x in p3_result:
        dec_x = dec_dict.get(x)
        if dec_x is None:
            flag.append(x)
        else:
            flag.append(dec_x)

    return ''.join(flag)

if __name__ == '__main__':

    p1_result = phase1()
    print(p1_result)

    p2_result = phase2(p1_result)
    print(p2_result)

    p3_result = phase3(p2_result)

    flag = phase4(p3_result)

    print(flag)
> python solve.py
Uh-oh, looks like we have another block of text, with some sort of special encoding. Can you figure out what this encoding is? (hint: if you look carefully, you'll notice that there only characters present are A-Z, a-z, 0-9, and sometimes / and +. See if you can find an encoding that looks like this one.)
TmV3IGNoYWxsZW5nZSEgQ2FuIHlvdSBmaWd1cmUgb3V0IHdoYXQncyBnb2luZyBvbiBoZXJlPyBJdCBsb29rcyBsaWtlIHRoZSBsZXR0ZXJzIGFyZSBzaGlmdGVkIGJ5IHNvbWUgY29uc3RhbnQuIChoaW50OiB5b3UgbWlnaHQgd2FudCB0byBzdGFydCBsb29raW5nIHVwIFJvbWFuIHBlb3BsZSkuCmt2YnNxcmQsIGl5ZSdibyBrdnd5Y2QgZHJvYm8hIFh5ZyBweWIgZHJvIHBzeGt2IChreG4gd2tpbG8gZHJvIHJrYm5vY2QuLi4pIHprYmQ6IGsgY2VsY2RzZGVkc3l4IG1zenJvYi4gU3ggZHJvIHB5dnZ5Z3N4cSBkb2hkLCBTJ2ZvIGRrdW94IHdpIHdvY2NrcW8ga3huIGJvenZrbW9uIG9mb2JpIGt2enJrbG9kc20gbXJrYmttZG9iIGdzZHIgayBteWJib2N6eXhub3htbyBkeSBrIG5zcHBvYm94ZCBtcmtia21kb2IgLSB1eHlneCBrYyBrIGNlbGNkc2RlZHN5eCBtc3pyb2IuIE1reCBpeWUgcHN4biBkcm8gcHN4a3YgcHZrcT8gcnN4ZDogR28gdXh5ZyBkcmtkIGRybyBwdmtxIHNjIHF5c3hxIGR5IGxvIHlwIGRybyBweWJ3a2QgZWRwdmtxey4uLn0gLSBncnNtciB3b2t4YyBkcmtkIHNwIGl5ZSBjb28gZHJrZCB6a2Rkb2J4LCBpeWUgdXh5ZyBncmtkIGRybyBteWJib2N6eXhub3htb2MgcHliIGUsIGQsIHAsIHYgaywga3huIHEga2JvLiBJeWUgbWt4IHpieWxrbHZpIGd5YnUgeWVkIGRybyBib3drc3hzeHEgbXJrYmttZG9iYyBsaSBib3p2a21zeHEgZHJvdyBreG4gc3hwb2Jic3hxIG15d3d5eCBneWJuYyBzeCBkcm8gT3hxdnNjciB2a3hxZWtxby4gS3h5ZHJvYiBxYm9rZCB3b2RyeW4gc2MgZHkgZWNvIHBib2Flb3htaSBreGt2aWNzYzogZ28gdXh5ZyBkcmtkICdvJyBjcnlnYyBleiB3eWNkIHlwZG94IHN4IGRybyBrdnpya2xvZCwgY3kgZHJrZCdjIHpieWxrbHZpIGRybyB3eWNkIG15d3d5eCBtcmtia21kb2Igc3ggZHJvIGRvaGQsIHB5dnZ5Z29uIGxpICdkJywga3huIGN5IHl4LiBZeG1vIGl5ZSB1eHlnIGsgcG9nIG1ya2JrbWRvYmMsIGl5ZSBta3ggc3hwb2IgZHJvIGJvY2QgeXAgZHJvIGd5Ym5jIGxrY29uIHl4IG15d3d5eCBneWJuYyBkcmtkIGNyeWcgZXogc3ggZHJvIE94cXZzY3Igdmt4cWVrcW8uCnJnaG54c2RmeXNkdGdodSEgcWdmIGlzYWsgY3RodHVpa2UgZGlrIHprbnRoaGt4IHJ4cWxkZ254c2xpcSByaXN5eWtobmsuIGlreGsgdHUgcyBjeXNuIGNneCBzeXkgcWdmeCBpc3hlIGtjY2d4ZHU6IGZkY3lzbnszaHJ4cWxkMTBoXzE1X3IwMHl9LiBxZ2YgdnR5eSBjdGhlIGRpc2QgcyB5Z2QgZ2MgcnhxbGRnbnhzbGlxIHR1IHBmdWQgemZ0eWV0aG4gZ2NjIGRpdHUgdWd4ZCBnYyB6c3V0ciBiaGd2eWtlbmssIHNoZSB0ZCB4a3N5eXEgdHUgaGdkIHVnIHpzZSBzY2RreCBzeXkuIGlnbGsgcWdmIGtocGdxa2UgZGlrIHJpc3l5a2huayE=
New challenge! Can you figure out what's going on here? It looks like the letters are shifted by some constant. (hint: you might want to start looking up Roman people).
kvbsqrd, iye'bo kvwycd drobo! Xyg pyb dro psxkv (kxn wkilo dro rkbnocd...) zkbd: k celcdsdedsyx mszrob. Sx dro pyvvygsxq dohd, S'fo dkuox wi wocckqo kxn bozvkmon ofobi kvzrklodsm mrkbkmdob gsdr k mybboczyxnoxmo dy k nsppoboxd mrkbkmdob - uxygx kc k celcdsdedsyx mszrob. Mkx iye psxn dro psxkv pvkq? rsxd: Go uxyg drkd dro pvkq sc qysxq dy lo yp dro pybwkd edpvkq{...} - grsmr wokxc drkd sp iye coo drkd zkddobx, iye uxyg grkd dro mybboczyxnoxmoc pyb e, d, p, v k, kxn q kbo. Iye mkx zbylklvi gybu yed dro bowksxsxq mrkbkmdobc li bozvkmsxq drow kxn sxpobbsxq mywwyx gybnc sx dro Oxqvscr vkxqekqo. Kxydrob qbokd wodryn sc dy eco pboaeoxmi kxkvicsc: go uxyg drkd 'o' crygc ez wycd ypdox sx dro kvzrklod, cy drkd'c zbylklvi dro wycd mywwyx mrkbkmdob sx dro dohd, pyvvygon li 'd', kxn cy yx. Yxmo iye uxyg k pog mrkbkmdobc, iye mkx sxpob dro bocd yp dro gybnc lkcon yx mywwyx gybnc drkd cryg ez sx dro Oxqvscr vkxqekqo.
rghnxsdfysdtghu! qgf isak cthtuike dik zknthhkx rxqldgnxsliq risyykhnk. ikxk tu s cysn cgx syy qgfx isxe kccgxdu: fdcysn{3hrxqld10h_15_r00y}. qgf vtyy cthe disd s ygd gc rxqldgnxsliq tu pfud zftyethn gcc ditu ugxd gc zsutr bhgvykenk, she td xksyyq tu hgd ug zse scdkx syy. iglk qgf khpgqke dik risyykhnk!
alright, you're almost there! Xow for the final (and maybe the hardest...) part: a substitution cipher. Sn the following text, S've taken my message and replaced every alphabetic character with a correspondence to a different character - known as a substitution cipher. Man you find the final flag? hint: Ge know that the flag is going to be of the format utflagq...s - which means that if you see that pattern, you know what the correspondences for u, t, f, l a, and g are. Iou can probably work out the remaining characters by replacing them and inferring common words in the Onglish language. Knother great method is to use frequency analysis: we know that 'e' shows up most often in the alphabet, so that's probably the most common character in the text, followed by 't', and so on. Ynce you know a few characters, you can infer the rest of the words based on common words that show up in the Onglish language.
congratulations! you have finished the beginner cryptography challenge. here is a flag for all your hard efforts: utflag{3ncrypt10n_15_c00l}. you will find that a lot of cryptography is just building off this sort of basic knowledge, and it really is not so bad after all. hope you enjoyed the challenge!

Jacobi's Chance Encryption (Cryptography, 750 pts, 76 solves)

Public Key: 569581432115411077780908947843367646738369018797567841
[flag.enc]

def encrypt(m, pub_key):

    bin_m = ''.join(format(ord(x), '08b') for x in m)
    n, y = pub_key

    def encrypt_bit(bit):
        x = randint(0, n)
        if bit == '1':
            return (y * pow(x, 2, n)) % n
        return pow(x, 2, n)

    return map(encrypt_bit, bin_m)
3ad3750f859c2c8fc1eb2076f876322cd17421c1cff88,0,0,0,3a46387fd709d3b4692cab59248ad3f426e9b8cd5bffe,0,2a6670878e3f48cfd5abcb7940b6df1d22650a438e905,0,5b9c517cca0d3ab82864545d1c943d8ab198650830b38,0,0,0,38e4b15d3ce5567cc7257cc8bb6b205caf2019b35f2a6,0,35bd6c7234811aef80bfee6245fbde8242b056730138a,ec3fffb29bfe1b8473bd2ea04898d3b8ae280cdd599,21498339f1250e7a6ad9d3de38ab4570cc5ae6e1abf1d,0,0,2e41759047b358d16001106dbed035c2988cc70e3465a,515d722c387c1ff1b3d82df07d9ab8d768601fd289977,0,0,5dcd5fb5ed0889a57b6d7f861465ab8bb0bacdf3c9015,3bea61e3ae79cfce65313ad0f3a5c06756718cdfe6dbc,0,0,32526a618b4a68f0f500e2c28b28657a685ef921ccb1e,0,0,2b2de511c67be3942f813642fc86ed58d3336cc545366,8b388f5ad9f9bcbfdbfd56448d31109cbda3b9a6a19e,1849b58830e2b2a4aec0f2e2402baf24e359bb2d2d597,0,0,182a15af9f447ae092b99cd4a92d3cbfa3e59b873df9d,47805e2beb12898f8ca786bf44c574e14fda72413441e,5e428ab03b0a59994e2665ab47b460c07a5c287ffa83e,c2b05078b5d5e4b4b16d63d3605e8e9168c094f9e49e,0,137e41ffaab7b673f9f66b124ec7c3d5cf6f35a6c027b,0,0,7013fd7be70e60d8466620b91322d2df1423fc3448c7,20a04d2503190d2dc212f3142954ad03b034d350705d0,0,0,0,38674cf6d907f0489eab987a92a226e696cb57756c1fd,0,0,0,0,49c93d181739024dfba0249ecdecd85d35fc2e3438c68,0,0,412b046edde3a94a3f1a0eb6e3c7239e143d0858c7579,0,0,21dc7b7db7e1f67072e1012df0f95da988984602c5040,2482d2a9798e2f818aca743ade524ad78d426787964e0,0,6481395ddbf7ff011854984fbfcdb68a4646d3d0a46c,5047bc50b4c717d50e70767b6337c0e288130689dd21d,b4c98854e437c12beb0092f5ab92e0ef03f24147bd57,0,0,3345f0bc3edf8c21b2fdf591557284f4ddcc90ec468b,0,4a34e17584c919b7dd2ba15f61a6761079590b274f236,4c4e57670dd3386e3f1d5ffb4a03e67c3cce8124fea02,0,20afc75c61bb13ecd4b8022e46ccb61430a1e9b1e3686,0,0,1c82bfae00e66d895126efa79559ce865dd3d10f48416,28afec1451036a90be5da04dbf130597fa7b5b9b96849,0,ee9fbef355f06e79fa1266786f203e67ba9ec5feebe8,350d1cefe02c55b2e53b2179bd61e5e4a8c56b0e767f7,5041e4ee83daf2e49d780330159b6cc1f0b2b04e69a1f,0,4cfbf617c552b79041891c882676111b05737f14c4427,0,0,0,0,0,49649168966fafd1ad13a557fbf288f1f334215035746,0,0,0,152e4e8604810791cffc63625c7bba32186d0b447ccc0,0,47e19816c3d743a62f8667030cf586ab9c74fe3d1e589,0,2447268356aac34514fd1a20f3ee9a5a6c68d5f9a20eb,0,21d82ba5f1dbee7b7d2a277fdf8778d979a6e6103a45c,0,0,0,0,0,3530fd4cfc21cfbe5cea85b058759768c67573b2a28a4,0,0,0,5c18b79bc7dbc03b158187afdca3e1667f20e1b44159e,417e9f2a0820298963144bbb205b9598baebeb6c952c7,d873894e2c210d5a5abecf22fb2b933bc3591bc42165,1053349f683a86ccf76667690c4e08a0a1359da67dea,30a7e917ad4a7edb8387f60a7d90bcc68b2abf1891059,0,0,1a0bb932e2d13139f649c98715952fb7986c663a6f24a,2ca00c675427fef81114c1052759a4e9313b2a4b4fe74,491769cbfb1825c85b02ac643547e0c5ffebb12a05d2,43ca5a52e5780ff99d51348f8f299c7f48b6bde7f8721,0,3dab706ec6906ee37c29cd807a7964dc95ec0d6c34968,0,0,0,0,8076cbc4fa82b9109f695e38d7fb8802c4b140238d5c,862773d42f56151c94b3c24606edaab8d12b4f38aa56,0,3d8ea2f2a54bc99dbd5a9c4a09bbeeb9f8f89f2fd4ec6,0,1a1162d8005591a6d9d255a3c64963dd6c2b5a63235ae,0,0,0,0,0,1ef1bd3f838744fb34cf07a4c4ba688a02c9fb550fea3,0,0,424d57bf5cdbe479ea7596d30348635b7017de83045af,422611e1297e811988effe0ae7973639b6fe95640feae,5925ea727f426aad4faa619c692f2040da956dde9c0b4,21b03f7303387078d1ecc723b5b9b82d864a950e8ae18,0,2acf2d1844e64941997d42f6634222cfea9bb8f1c6c3a,0,0,0,2652f587a28e0bc9fccc9266f4d4fd24dd009b311c029,0,1b018b971ad55025ce3150dfcab3f476b5a8a51e97cc9,31b3629e20a25d917acda299cee182df23e84933e1fc7,2cdecd0635ef68af1b49deba4d4c5f368290731b12955,0,0,0,59af6719c0d73625fb24c6054ddc947d9007777832bb5,0,3f51ceffcda71936ed3d49505d2e855a93f70bcf4d680,56b5003cf8674e0b50e41a7ead88b35c934c665f99eaf,1e13bf35815787e44009499c4d828e33136f4b934e8c6,0,0,1dc0e943e8bdd0afb8c769fe57b59249fd8a513f6472c,4995b3983e52801940feca4e4ad772f7f988d794808e3,0,5a4d18df6303ae5d27d730e9ec03879a9354d6ac9bb6e,0,576ff5eb2ef65e2742980cd4dcd908c92ee777792c1ba,0,0,69455d800e45b163ebabf42796fa489b37674d36e9be,0,0,0,21acac2b8223dff389be96cdc894a7a99a32599d472ce,870c33409d4bc8049b72a5ffce00f229821bcdafe053,0,0,0,52b4d9258e96c4be687f712a08c9ec9c7daba01bcd74c,0,3643b13ffb3ee5208e557abb03697468ff9ce6c5d8bf3,50ef19f0f625bb8e3ab2915201bcf9ae0b40656bbee49,1056670d4c3ea98038f8ecd74440033aeff3064a2e005,0,0,22698fa2d377aee3f2a63c288f17fe2d1061b61b62b94,0,26faa98d38033cfb0653b447d8a7f268f68ab8e51f252,1f5b0997e693c897caec45f5ea38cb24b4ddd27422fec,0,4bb0e445302f5b28ee3e7b36a93dd2e8d12eaa3119772,0,0,4d42df71d8e24a1424eed881c1302f6c21114b1ba84f4,0,0,0,0,312607440a6ec3fdb8401d1db690de41dfeae70cfaefe,0,0,3f620fe471b5b59218c1e554fffc64066e576e09c9b6,0,0,0,23cd34716eaa5762d59728699783cb51d8f87525ab2c8,27f24f062089f67afac376186335fbbd6da4ab6803bf1,0,27811be1b34c349949a7d7de701438ace3f22ab3857b4,0,0,0,0,0,c2937375f4db8464dc81875295ff47d897b749572cb0,0,0,1a2425e6231a8b2dfd59b171ac2fa39a54c1c5f2bc18c,0,4601f4a99029129f673dae90c2b8f08ac77c9acb2b67a,2ce224a2c3f3927658c98890201c41e1485ab81773447,0,17f9f932dbb1f2aa279be9b5751d3e461ea97b79fec18,0,0,467cd79faa40ffef1f69490c3205efef24847eb95c313,0,0,0,931f3df14edaf21ebfc1243b1bb065fa128d6f112f10,30671798eb74ea9593b5dd38710f672d25a48d5cab263,0,1e39d859b972edb5f25c0fc197137e89892361ed6c919,0,0,0,0,0,fb0da1dfe3749d91d7260425b08f23b35d22b4a60512,0,0,61718b9028558be04f9af538877bd5fea45000351480,0,0,0,5a225a78daed3e0a2ca3b09629d2e98d37e0ecb48806c,12862b5946fef0d125e0a24fadb0ea567f40b37c8f984,0,0,0,206ecdbbd50a6800ab5bc293b47c2c784bac7578a8ba5,0,481528aa7c00de41818b4a24ebddefa48533dc43a678d,0,4d09c1ead0061318a6410214fbe0b0ccc72056835583d,0,0,45c40da5f6ed58e0851f635117d8162094814d4a10f6e,0,0,49d96e0bcf458bf606c812d4c3c9a7a3b8b4cb41482ef,0,2a0381519bd15dfce996317d3582f858eaa4a0ec0d5e1,0,0,2c1051612093e8e2149f4e2b9b71fc08bf2b1830d7b0b,486bd7ef1b04a2b282d6232e33b6bc72aeb7e971c1238,1c6afa8a2da6e0ea764fd4e0d8a7866111e1afc80ca3e,0,208090933fe494e5e2866f08875a43c0bad38e2138513,406221453e74594ff0a78ad722752655387ac5d17361,0,0,5ebf43af7a6387ee99da56a5135fca5a2c3776c074315,1b5340564c3fcfa9b7aff92de27759b62b2b8e73d5f1e,0,2739b0fd92f8a9304fba5495b0e191087d754ce0b394,0,6416febf2962928a8ef5120576b85de04cf822fe49fe,0,0,0,3e5b4cd5335bce2416b2bdcf69749a058ca3086823af3,33e4a2d274d064bc3b411571cca3d6c2d85404f3ea7b4,0,115ac281bf28f5059ec51c4650d23b6c4a9f454e1b20c,25d011ee737648a87e60e3b97be76c8a9dd3268361796,0,425ed19ba98db56a50e4a298fda5fa9715ab74017a13a,0,0,0,0,0,98ac380fadcde93784206cdbae7a9bc1dda3a92f0e8d,0,0,0,14a9f8eefe6c1aea36c0f011bc6f5fc87fad4510a2868,0,2fe9b18543777aa26ebcdf46e1fc3c652525a2a4a082f,4689ab7aaddd26b88e44abbf52ce6cbf741000c4306e2,87fa26f9a0e9edb1d0ae9145b79d537ce31e5757d8da,0,0,352d826b6b3dfab4c5ada55f2820bea15f98a1e52d304,0,36492d9686ff9b087f76d6ca0be42a9d4a4fd210836a7,dec4371651f6be401e348fdeddb35a94f3b4df6f787c,2450d35d7987a8f8925f4f237b074a40579370a702a7a,bbffc03f22ee8828ad4440c51ab64c8489f443587ade,0,0,1eb996e05dd1768b73e431f67bbdd6c8407cf05539bdd,42af69f6f1de85ebd85d524ee0c880d17a54717b725a4,0,58a7fd168e149a79b4a4334d1d45166fb819e9bae98c,0,23ee10dbd81466fa2f8ecd88262acc81fd55ea565b2ae,0,0,17af0a96a9b2e7e3312bd69df2a5e30c0f196fbaf8d9,0,0,0,0,3b07b9ac09699fb2e689e24323069f5bf18f9cbcbfd12,0,0,0,21696dbfd09e07b904268332fdbfe9183c9128af58580,59ac9552519d6071903d42e04505f36e46ff7e4dc8f04,0,5cf547a07a1aa5f22d735f13e03dd9c218e69a98742ad,f5328872b06391032c8e4f43667c2817a4edad3a2bf1,0,0,0,0,4e590f3ecab6d14a5fe0ca2e77c4aa15a067e96ac3756,dfb2129fe24a885115f47ffe263b606b98e811f57956,0,2540f861746a56c303d83bf411ed5306c584d66ffaab5,0,0,0,0,0,3d9c6045b72e8c8e8681770056e640adf00770a3f93b5,0,

アプローチ:modの性質

encryptのコードとflag.encが与えられます.
encyrptのコードではメッセージ(flag)1文字1文字を8桁の2進数に変換し, 変換後のbitに応じてencryptしているようです(1のときは謎encrypt, 0のときは似非RSA).

次に似非RSAのdecryptが可能かどうかについて考えていきます.
結論から述べると似非RSAのdecryptは簡単に行なえます.なぜなら,pub_keyがとても小さいので簡単に素因数分解できるためです.

しかし,似非RSAのdecryptを行えたとしてもその値が(y * pow(x, 2, n)) % nによってencryptされた値なのか,pow(x, 2, n)によってencryptされた値なのかを判断する方法がないように思われます.

ここでもう一度flag.encに注目すると0の出現頻度がおかしいことに気づきます.

'a'をencryptして動作を確かめてみます.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import random

def encrypt_bit(bit):
    n = 569581432115411077780908947843367646738369018797567841
    y = 569581432115411077780908947843367646738369018797567841
    x = random.randint(0, n)
    if bit == '1':
        return (y * pow(x, 2, n)) % n
    return pow(x, 2, n)

if __name__ == '__main__':
    bin_m = '01100001' # 'a'
    x = map(encrypt_bit, bin_m)
    print(list(x))
> python example.py
[503907194163742347950749151189780952424783277180090743, 0, 0, 232013060288249869474521860545175323741752601394883211, 32029176599138398957796327722421222608836960101753808, 125529946533928951618339723926128537231579346326887135, 558211320207958083662854954506953622060168929465128232, 0]

ビット列が1になっているところが0としてencryptされていることに気づきます.
冷静に考えてみればそれはそうで,(y * pow(x, 2, n)) % n におけるynは一致するのでmodの性質上この式は0になります.

encrypt方式の欠点が分かったのでソルバに落とします.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-


if __name__ == '__main__':

    with open('./flag.enc') as f:
        s = f.read()

    enc_text = s.split(',')
    flag = []
    bits = ''
    for x in enc_text[:-1]:
        if x == '0':
            bits += '1'
        else:
            bits += '0'

        if len(bits) == 8:
            flag.append(chr(int(bits,2)))
            bits = ''

    print(''.join(flag))
> python solve.py
utflag{did_u_pay_attention_in_number_theory}

utflag{did_u_pay_attention_in_number_theory}

まとめ

  • Crypto問簡単なのしか解けなくてかなしい
  • 就活でいそがしい
  • 時間に余裕を持ってCTFしたい